File: perf_observer.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (66 lines) | stat: -rw-r--r-- 1,784 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#pragma once

#include "caffe2/core/common.h"
#include "caffe2/core/net.h"
#include "caffe2/core/observer.h"
#include "caffe2/core/timer.h"
#include "observers/macros.h"

#include <unordered_map>

namespace caffe2 {

double getClockTimeMilliseconds();

class CAFFE2_OBSERVER_API PerfNetObserver : public NetObserver {
 public:
  explicit PerfNetObserver(NetBase* subject_);
  virtual ~PerfNetObserver();

 private:
  void Start() override;
  void Stop() override;

  caffe2::string getObserverName(const OperatorBase* op, int idx) const;

 private:
  enum LogType {
    NONE,
    OPERATOR_DELAY,
    NET_DELAY,
  };
  LogType logType_;
  unsigned int numRuns_;
  std::unordered_map<const OperatorBase*, const ObserverBase<OperatorBase>*>
      observerMap_;

  double wallMilliseconds_;
  double cpuMilliseconds_;
};

class PerfOperatorObserver : public ObserverBase<OperatorBase> {
 public:
  PerfOperatorObserver(OperatorBase* op, PerfNetObserver* netObserver);
  virtual ~PerfOperatorObserver();

  double getWallMilliseconds() const;
  double getCpuMilliseconds() const;
  std::vector<TensorShape> getTensorShapes() const;

 private:
  void Start() override;
  void Stop() override;

 private:
  // Observer of a net that owns corresponding op. We make sure net is never
  // destructed while operator observer is still alive. First operator observer
  // gets destructed, then the op, then the net and its observer.
  // We do this trick in order to get access to net's name and other fields
  // without storing inside the operator observer. Each field is memory
  // costly here and a raw pointer is a cheapest sholution
  PerfNetObserver* netObserver_;
  double wallMilliseconds_;
  double cpuMilliseconds_;
  std::vector<TensorShape> tensor_shapes_;
};
} // namespace caffe2