1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
#! /usr/bin/env python3
import onnx.backend
import argparse
import caffe2.python.workspace as c2_workspace
import glob
import json
import numpy as np
import onnx
import caffe2.python.onnx.frontend
import caffe2.python.onnx.backend
import os
import shutil
import tarfile
import tempfile
import boto3
from six.moves.urllib.request import urlretrieve
from caffe2.python.models.download import downloadFromURLToFile, getURLFromName, deleteDirectory
from caffe2.proto import caffe2_pb2
from onnx import numpy_helper
"""A script converting Caffe2 models to ONNX, and updating ONNX model zoos.
Arguments:
-v, verbose
--local-dir, where we store the ONNX and Caffe2 models
--no-cache, ignore existing models in local-dir
--clean-test-data, delete all the existing test data when updating ONNX model zoo
--add-test-data, add add-test-data sets of test data for each ONNX model
--only-local, run locally (for testing purpose)
Examples:
# store the data in /home/username/zoo-dir, delete existing test data, ignore local cache,
# and generate 3 sets of new test data
python update-caffe2-models.py --local-dir /home/username/zoo-dir --clean-test-data --no-cache --add-test-data 3
"""
# TODO: Add GPU support
def upload_onnx_model(model_name, zoo_dir, backup=False, only_local=False):
if only_local:
print('No uploading in local only mode.')
return
model_dir = os.path.join(zoo_dir, model_name)
suffix = '-backup' if backup else ''
if backup:
print('Backing up the previous version of ONNX model {}...'.format(model_name))
rel_file_name = '{}{}.tar.gz'.format(model_name, suffix)
abs_file_name = os.path.join(zoo_dir, rel_file_name)
print('Compressing {} model to {}'.format(model_name, abs_file_name))
with tarfile.open(abs_file_name, 'w:gz') as f:
f.add(model_dir, arcname=model_name)
file_size = os.stat(abs_file_name).st_size
print('Uploading {} ({} MB) to s3 cloud...'.format(abs_file_name, float(file_size) / 1024 / 1024))
client = boto3.client('s3', 'us-east-1')
transfer = boto3.s3.transfer.S3Transfer(client)
transfer.upload_file(abs_file_name, 'download.onnx', 'models/latest/{}'.format(rel_file_name),
extra_args={'ACL': 'public-read'})
print('Successfully uploaded {} to s3!'.format(rel_file_name))
def download_onnx_model(model_name, zoo_dir, use_cache=True, only_local=False):
model_dir = os.path.join(zoo_dir, model_name)
if os.path.exists(model_dir):
if use_cache:
upload_onnx_model(model_name, zoo_dir, backup=True, only_local=only_local)
return
else:
shutil.rmtree(model_dir)
url = 'https://s3.amazonaws.com/download.onnx/models/latest/{}.tar.gz'.format(model_name)
download_file = tempfile.NamedTemporaryFile(delete=False)
try:
download_file.close()
print('Downloading ONNX model {} from {} and save in {} ...\n'.format(
model_name, url, download_file.name))
urlretrieve(url, download_file.name)
with tarfile.open(download_file.name) as t:
print('Extracting ONNX model {} to {} ...\n'.format(model_name, zoo_dir))
t.extractall(zoo_dir)
except Exception as e:
print('Failed to download/backup data for ONNX model {}: {}'.format(model_name, e))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
finally:
os.remove(download_file.name)
if not only_local:
upload_onnx_model(model_name, zoo_dir, backup=True, only_local=only_local)
def download_caffe2_model(model_name, zoo_dir, use_cache=True):
model_dir = os.path.join(zoo_dir, model_name)
if os.path.exists(model_dir):
if use_cache:
return
else:
shutil.rmtree(model_dir)
os.makedirs(model_dir)
for f in ['predict_net.pb', 'init_net.pb', 'value_info.json']:
url = getURLFromName(model_name, f)
dest = os.path.join(model_dir, f)
try:
try:
downloadFromURLToFile(url, dest,
show_progress=False)
except TypeError:
# show_progress not supported prior to
# Caffe2 78c014e752a374d905ecfb465d44fa16e02a28f1
# (Sep 17, 2017)
downloadFromURLToFile(url, dest)
except Exception as e:
print("Abort: {reason}".format(reason=e))
print("Cleaning up...")
deleteDirectory(model_dir)
raise
def caffe2_to_onnx(caffe2_model_name, caffe2_model_dir):
caffe2_init_proto = caffe2_pb2.NetDef()
caffe2_predict_proto = caffe2_pb2.NetDef()
with open(os.path.join(caffe2_model_dir, 'init_net.pb'), 'rb') as f:
caffe2_init_proto.ParseFromString(f.read())
caffe2_init_proto.name = '{}_init'.format(caffe2_model_name)
with open(os.path.join(caffe2_model_dir, 'predict_net.pb'), 'rb') as f:
caffe2_predict_proto.ParseFromString(f.read())
caffe2_predict_proto.name = caffe2_model_name
with open(os.path.join(caffe2_model_dir, 'value_info.json'), 'rb') as f:
value_info = json.loads(f.read())
print('Converting Caffe2 model {} in {} to ONNX format'.format(caffe2_model_name, caffe2_model_dir))
onnx_model = caffe2.python.onnx.frontend.caffe2_net_to_onnx_model(
init_net=caffe2_init_proto,
predict_net=caffe2_predict_proto,
value_info=value_info
)
return onnx_model, caffe2_init_proto, caffe2_predict_proto
def tensortype_to_ndarray(tensor_type):
shape = []
for dim in tensor_type.shape.dim:
shape.append(dim.dim_value)
if tensor_type.elem_type == onnx.TensorProto.FLOAT:
type = np.float32
elif tensor_type.elem_type == onnx.TensorProto.INT:
type = np.int32
else:
raise
array = np.random.rand(*shape).astype(type)
return array
def generate_test_input_data(onnx_model, scale):
real_inputs_names = list(set([input.name for input in onnx_model.graph.input]) - set([init.name for init in onnx_model.graph.initializer]))
real_inputs = []
for name in real_inputs_names:
for input in onnx_model.graph.input:
if name == input.name:
real_inputs.append(input)
test_inputs = []
for input in real_inputs:
ndarray = tensortype_to_ndarray(input.type.tensor_type)
test_inputs.append((input.name, ndarray * scale))
return test_inputs
def generate_test_output_data(caffe2_init_net, caffe2_predict_net, inputs):
p = c2_workspace.Predictor(caffe2_init_net, caffe2_predict_net)
inputs_map = {input[0]:input[1] for input in inputs}
output = p.run(inputs_map)
c2_workspace.ResetWorkspace()
return output
def onnx_verify(onnx_model, inputs, ref_outputs):
prepared = caffe2.python.onnx.backend.prepare(onnx_model)
onnx_inputs = []
for input in inputs:
if isinstance(input, tuple):
onnx_inputs.append(input[1])
else:
onnx_inputs.append(input)
onnx_outputs = prepared.run(inputs=onnx_inputs)
np.testing.assert_almost_equal(onnx_outputs, ref_outputs, decimal=3)
model_mapping = {
'bvlc_alexnet': 'bvlc_alexnet',
'bvlc_googlenet': 'bvlc_googlenet',
'bvlc_reference_caffenet': 'bvlc_reference_caffenet',
'bvlc_reference_rcnn_ilsvrc13': 'bvlc_reference_rcnn_ilsvrc13',
'densenet121': 'densenet121',
#'finetune_flickr_style': 'finetune_flickr_style',
'inception_v1': 'inception_v1',
'inception_v2': 'inception_v2',
'resnet50': 'resnet50',
'shufflenet': 'shufflenet',
'squeezenet': 'squeezenet_old',
#'vgg16': 'vgg16',
'vgg19': 'vgg19',
'zfnet512': 'zfnet512',
}
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Update the ONNX models.')
parser.add_argument('-v', action="store_true", default=False, help="verbose")
parser.add_argument("--local-dir", type=str, default=os.path.expanduser('~'),
help="local dir to store Caffe2 and ONNX models")
parser.add_argument("--no-cache", action="store_true", default=False,
help="whether use local ONNX models")
parser.add_argument('--clean-test-data', action="store_true", default=False,
help="remove the old test data")
parser.add_argument('--add-test-data', type=int, default=0,
help="add new test data")
parser.add_argument('--only-local', action="store_true", default=False,
help="no upload including backup")
args = parser.parse_args()
delete_test_data = args.clean_test_data
add_test_data = args.add_test_data
use_cache = not args.no_cache
only_local = args.only_local
root_dir = args.local_dir
caffe2_zoo_dir = os.path.join(root_dir, ".caffe2", "models")
onnx_zoo_dir = os.path.join(root_dir, ".onnx", "models")
for onnx_model_name in model_mapping:
c2_model_name = model_mapping[onnx_model_name]
print('####### Processing ONNX model {} ({} in Caffe2) #######'.format(onnx_model_name, c2_model_name))
download_caffe2_model(c2_model_name, caffe2_zoo_dir, use_cache=use_cache)
download_onnx_model(onnx_model_name, onnx_zoo_dir, use_cache=use_cache, only_local=only_local)
onnx_model_dir = os.path.join(onnx_zoo_dir, onnx_model_name)
if delete_test_data:
print('Deleting all the existing test data...')
# NB: For now, we don't delete the npz files.
#for f in glob.glob(os.path.join(onnx_model_dir, '*.npz')):
# os.remove(f)
for f in glob.glob(os.path.join(onnx_model_dir, 'test_data_set*')):
shutil.rmtree(f)
onnx_model, c2_init_net, c2_predict_net = caffe2_to_onnx(c2_model_name, os.path.join(caffe2_zoo_dir, c2_model_name))
print('Deleteing old ONNX {} model...'.format(onnx_model_name))
for f in glob.glob(os.path.join(onnx_model_dir, 'model*'.format(onnx_model_name))):
os.remove(f)
print('Serializing generated ONNX {} model ...'.format(onnx_model_name))
with open(os.path.join(onnx_model_dir, 'model.onnx'), 'wb') as file:
file.write(onnx_model.SerializeToString())
print('Verifying model {} with ONNX model checker...'.format(onnx_model_name))
onnx.checker.check_model(onnx_model)
total_existing_data_set = 0
print('Verifying model {} with existing test data...'.format(onnx_model_name))
for f in glob.glob(os.path.join(onnx_model_dir, '*.npz')):
test_data = np.load(f, encoding='bytes')
inputs = list(test_data['inputs'])
ref_outputs = list(test_data['outputs'])
onnx_verify(onnx_model, inputs, ref_outputs)
total_existing_data_set += 1
for f in glob.glob(os.path.join(onnx_model_dir, 'test_data_set*')):
inputs = []
inputs_num = len(glob.glob(os.path.join(f, 'input_*.pb')))
for i in range(inputs_num):
tensor = onnx.TensorProto()
with open(os.path.join(f, 'input_{}.pb'.format(i)), 'rb') as pf:
tensor.ParseFromString(pf.read())
inputs.append(numpy_helper.to_array(tensor))
ref_outputs = []
ref_outputs_num = len(glob.glob(os.path.join(f, 'output_*.pb')))
for i in range(ref_outputs_num):
tensor = onnx.TensorProto()
with open(os.path.join(f, 'output_{}.pb'.format(i)), 'rb') as pf:
tensor.ParseFromString(pf.read())
ref_outputs.append(numpy_helper.to_array(tensor))
onnx_verify(onnx_model, inputs, ref_outputs)
total_existing_data_set += 1
starting_index = 0
while os.path.exists(os.path.join(onnx_model_dir, 'test_data_set_{}'.format(starting_index))):
starting_index += 1
if total_existing_data_set == 0 and add_test_data == 0:
add_test_data = 3
total_existing_data_set = 3
print('Generating {} sets of new test data...'.format(add_test_data))
for i in range(starting_index, add_test_data + starting_index):
data_dir = os.path.join(onnx_model_dir, 'test_data_set_{}'.format(i))
os.makedirs(data_dir)
inputs = generate_test_input_data(onnx_model, 255)
ref_outputs = generate_test_output_data(c2_init_net, c2_predict_net, inputs)
onnx_verify(onnx_model, inputs, ref_outputs)
for index, input in enumerate(inputs):
tensor = numpy_helper.from_array(input[1])
with open(os.path.join(data_dir, 'input_{}.pb'.format(index)), 'wb') as file:
file.write(tensor.SerializeToString())
for index, output in enumerate(ref_outputs):
tensor = numpy_helper.from_array(output)
with open(os.path.join(data_dir, 'output_{}.pb'.format(index)), 'wb') as file:
file.write(tensor.SerializeToString())
del onnx_model
del c2_init_net
del c2_predict_net
upload_onnx_model(onnx_model_name, onnx_zoo_dir, backup=False, only_local=only_local)
print('\n\n')
|