File: test_activation_sparsifier.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (381 lines) | stat: -rw-r--r-- 14,890 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# -*- coding: utf-8 -*-
# Owner(s): ["module: unknown"]

import copy
from torch.testing._internal.common_utils import TestCase, skipIfTorchDynamo
import logging
import torch
from torch.ao.sparsity._experimental.activation_sparsifier.activation_sparsifier import ActivationSparsifier
import torch.nn as nn
import torch.nn.functional as F
from torch.ao.sparsity.sparsifier.utils import module_to_fqn
from typing import List

logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)


class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
        self.conv2 = nn.Conv2d(32, 32, kernel_size=3)
        self.identity1 = nn.Identity()
        self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.linear1 = nn.Linear(4608, 128)
        self.identity2 = nn.Identity()
        self.linear2 = nn.Linear(128, 10)

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        out = self.identity1(out)
        out = self.max_pool1(out)

        batch_size = x.shape[0]
        out = out.reshape(batch_size, -1)

        out = F.relu(self.identity2(self.linear1(out)))
        out = self.linear2(out)
        return out


class TestActivationSparsifier(TestCase):
    def _check_constructor(self, activation_sparsifier, model, defaults, sparse_config):
        """Helper function to check if the model, defaults and sparse_config are loaded correctly
        in the activation sparsifier
        """
        sparsifier_defaults = activation_sparsifier.defaults
        combined_defaults = {**defaults, 'sparse_config': sparse_config}

        # more keys are populated in activation sparsifier (eventhough they may be None)
        assert len(combined_defaults) <= len(activation_sparsifier.defaults)

        for key, config in sparsifier_defaults.items():
            # all the keys in combined_defaults should be present in sparsifier defaults
            assert config == combined_defaults.get(key, None)

    def _check_register_layer(self, activation_sparsifier, defaults, sparse_config, layer_args_list):
        """Checks if layers in the model are correctly mapped to it's arguments.

        Args:
            activation_sparsifier (sparsifier object)
                activation sparsifier object that is being tested.

            defaults (Dict)
                all default config (except sparse_config)

            sparse_config (Dict)
                default sparse config passed to the sparsifier

            layer_args_list (list of tuples)
                Each entry in the list corresponds to the layer arguments.
                First entry in the tuple corresponds to all the arguments other than sparse_config
                Second entry in the tuple corresponds to sparse_config
        """
        # check args
        data_groups = activation_sparsifier.data_groups
        assert len(data_groups) == len(layer_args_list)
        for layer_args in layer_args_list:
            layer_arg, sparse_config_layer = layer_args

            # check sparse config
            sparse_config_actual = copy.deepcopy(sparse_config)
            sparse_config_actual.update(sparse_config_layer)

            name = module_to_fqn(activation_sparsifier.model, layer_arg['layer'])

            assert data_groups[name]['sparse_config'] == sparse_config_actual

            # assert the rest
            other_config_actual = copy.deepcopy(defaults)
            other_config_actual.update(layer_arg)
            other_config_actual.pop('layer')

            for key, value in other_config_actual.items():
                assert key in data_groups[name]
                assert value == data_groups[name][key]

            # get_mask should raise error
            with self.assertRaises(ValueError):
                activation_sparsifier.get_mask(name=name)

    def _check_pre_forward_hook(self, activation_sparsifier, data_list):
        """Registering a layer attaches a pre-forward hook to that layer. This function
        checks if the pre-forward hook works as expected. Specifically, checks if the
        input is aggregated correctly.

        Basically, asserts that the aggregate of input activations is the same as what was
        computed in the sparsifier.

        Args:
            activation_sparsifier (sparsifier object)
                activation sparsifier object that is being tested.

            data_list (list of torch tensors)
                data input to the model attached to the sparsifier

        """
        # can only check for the first layer
        data_agg_actual = data_list[0]
        model = activation_sparsifier.model
        layer_name = module_to_fqn(model, model.conv1)
        agg_fn = activation_sparsifier.data_groups[layer_name]['aggregate_fn']

        for i in range(1, len(data_list)):
            data_agg_actual = agg_fn(data_agg_actual, data_list[i])

        assert 'data' in activation_sparsifier.data_groups[layer_name]
        assert torch.all(activation_sparsifier.data_groups[layer_name]['data'] == data_agg_actual)

        return data_agg_actual

    def _check_step(self, activation_sparsifier, data_agg_actual):
        """Checks if .step() works as expected. Specifically, checks if the mask is computed correctly.

        Args:
            activation_sparsifier (sparsifier object)
                activation sparsifier object that is being tested.

            data_agg_actual (torch tensor)
                aggregated torch tensor

        """
        model = activation_sparsifier.model
        layer_name = module_to_fqn(model, model.conv1)
        assert layer_name is not None

        reduce_fn = activation_sparsifier.data_groups[layer_name]['reduce_fn']

        data_reduce_actual = reduce_fn(data_agg_actual)
        mask_fn = activation_sparsifier.data_groups[layer_name]['mask_fn']
        sparse_config = activation_sparsifier.data_groups[layer_name]['sparse_config']
        mask_actual = mask_fn(data_reduce_actual, **sparse_config)

        mask_model = activation_sparsifier.get_mask(layer_name)

        assert torch.all(mask_model == mask_actual)

        for _, config in activation_sparsifier.data_groups.items():
            assert 'data' not in config


    def _check_squash_mask(self, activation_sparsifier, data):
        """Makes sure that squash_mask() works as usual. Specifically, checks
        if the sparsifier hook is attached correctly.
        This is achieved by only looking at the identity layers and making sure that
        the output == layer(input * mask).

        Args:
            activation_sparsifier (sparsifier object)
                activation sparsifier object that is being tested.

            data (torch tensor)
                dummy batched data
        """
        # create a forward hook for checking ouput == layer(input * mask)
        def check_output(name):
            mask = activation_sparsifier.get_mask(name)
            features = activation_sparsifier.data_groups[name].get('features')
            feature_dim = activation_sparsifier.data_groups[name].get('feature_dim')

            def hook(module, input, output):
                input_data = input[0]
                if features is None:
                    assert torch.all(mask * input_data == output)
                else:
                    for feature_idx in range(0, len(features)):
                        feature = torch.Tensor([features[feature_idx]], device=input_data.device).long()
                        inp_data_feature = torch.index_select(input_data, feature_dim, feature)
                        out_data_feature = torch.index_select(output, feature_dim, feature)

                        assert torch.all(mask[feature_idx] * inp_data_feature == out_data_feature)
            return hook

        for name, config in activation_sparsifier.data_groups.items():
            if 'identity' in name:
                config['layer'].register_forward_hook(check_output(name))

        activation_sparsifier.model(data)


    def _check_state_dict(self, sparsifier1):
        """Checks if loading and restoring of state_dict() works as expected.
        Basically, dumps the state of the sparsifier and loads it in the other sparsifier
        and checks if all the configuration are in line.

        This function is called at various times in the workflow to makes sure that the sparsifier
        can be dumped and restored at any point in time.
        """
        state_dict = sparsifier1.state_dict()

        new_model = Model()

        # create an empty new sparsifier
        sparsifier2 = ActivationSparsifier(new_model)

        assert sparsifier2.defaults != sparsifier1.defaults
        assert len(sparsifier2.data_groups) != len(sparsifier1.data_groups)

        sparsifier2.load_state_dict(state_dict)

        assert sparsifier2.defaults == sparsifier1.defaults

        # import pdb; pdb.set_trace()
        for name, state in sparsifier2.state.items():
            assert name in sparsifier1.state
            mask1 = sparsifier1.state[name]['mask']
            mask2 = state['mask']

            if mask1 is None:
                assert mask2 is None
            else:
                assert type(mask1) == type(mask2)
                if isinstance(mask1, List):
                    assert len(mask1) == len(mask2)
                    for idx in range(len(mask1)):
                        assert torch.all(mask1[idx] == mask2[idx])
                else:
                    # import pdb; pdb.set_trace()
                    assert torch.all(mask1 == mask2)

        # make sure that the state dict is stored as torch sparse
        for _, state in state_dict['state'].items():
            mask = state['mask']
            if mask is not None:
                if isinstance(mask, List):
                    for idx in range(len(mask)):
                        assert mask[idx].is_sparse
                else:
                    assert mask.is_sparse

        dg1, dg2 = sparsifier1.data_groups, sparsifier2.data_groups

        for layer_name, config in dg1.items():
            assert layer_name in dg2

            # exclude hook and layer
            config1 = {key: value for key, value in config.items() if key not in ['hook', 'layer']}
            config2 = {key: value for key, value in dg2[layer_name].items() if key not in ['hook', 'layer']}

            assert config1 == config2

    @skipIfTorchDynamo("TorchDynamo fails with unknown reason")
    def test_activation_sparsifier(self):
        """Simulates the workflow of the activation sparsifier, starting from object creation
        till squash_mask().
        The idea is to check that everything works as expected while in the workflow.
        """
        # defining aggregate, reduce and mask functions
        def agg_fn(x, y):
            return x + y

        def reduce_fn(x):
            return torch.mean(x, dim=0)

        def _vanilla_norm_sparsifier(data, sparsity_level):
            r"""Similar to data norm spasifier but block_shape = (1,1).
            Simply, flatten the data, sort it and mask out the values less than threshold
            """
            data_norm = torch.abs(data).flatten()
            _, sorted_idx = torch.sort(data_norm)
            threshold_idx = round(sparsity_level * len(sorted_idx))
            sorted_idx = sorted_idx[:threshold_idx]

            mask = torch.ones_like(data_norm)
            mask.scatter_(dim=0, index=sorted_idx, value=0)
            mask = mask.reshape(data.shape)

            return mask

        # Creating default function and sparse configs
        # default sparse_config
        sparse_config = {
            'sparsity_level': 0.5
        }

        defaults = {
            'aggregate_fn': agg_fn,
            'reduce_fn': reduce_fn
        }

        # simulate the workflow
        # STEP 1: make data and activation sparsifier object
        model = Model()  # create model
        activation_sparsifier = ActivationSparsifier(model, **defaults, **sparse_config)

        # Test Constructor
        self._check_constructor(activation_sparsifier, model, defaults, sparse_config)

        # STEP 2: Register some layers
        register_layer1_args = {
            'layer': model.conv1,
            'mask_fn': _vanilla_norm_sparsifier
        }
        sparse_config_layer1 = {'sparsity_level': 0.3}

        register_layer2_args = {
            'layer': model.linear1,
            'features': [0, 10, 234],
            'feature_dim': 1,
            'mask_fn': _vanilla_norm_sparsifier
        }
        sparse_config_layer2 = {'sparsity_level': 0.1}

        register_layer3_args = {
            'layer': model.identity1,
            'mask_fn': _vanilla_norm_sparsifier
        }
        sparse_config_layer3 = {'sparsity_level': 0.3}

        register_layer4_args = {
            'layer': model.identity2,
            'features': [0, 10, 20],
            'feature_dim': 1,
            'mask_fn': _vanilla_norm_sparsifier
        }
        sparse_config_layer4 = {'sparsity_level': 0.1}

        layer_args_list = [(register_layer1_args, sparse_config_layer1), (register_layer2_args, sparse_config_layer2)]
        layer_args_list += [(register_layer3_args, sparse_config_layer3), (register_layer4_args, sparse_config_layer4)]

        # Registering..
        for layer_args in layer_args_list:
            layer_arg, sparse_config_layer = layer_args
            activation_sparsifier.register_layer(**layer_arg, **sparse_config_layer)

        # check if things are registered correctly
        self._check_register_layer(activation_sparsifier, defaults, sparse_config, layer_args_list)

        # check state_dict after registering and before model forward
        self._check_state_dict(activation_sparsifier)

        # check if forward pre hooks actually work
        # some dummy data
        data_list = []
        num_data_points = 5
        for _ in range(0, num_data_points):
            rand_data = torch.randn(16, 1, 28, 28)
            activation_sparsifier.model(rand_data)
            data_list.append(rand_data)

        data_agg_actual = self._check_pre_forward_hook(activation_sparsifier, data_list)
        # check state_dict() before step()
        self._check_state_dict(activation_sparsifier)

        # STEP 3: sparsifier step
        activation_sparsifier.step()

        # check state_dict() after step() and before squash_mask()
        self._check_state_dict(activation_sparsifier)

        # self.check_step()
        self._check_step(activation_sparsifier, data_agg_actual)

        # STEP 4: squash mask
        activation_sparsifier.squash_mask()

        self._check_squash_mask(activation_sparsifier, data_list[0])

        # check state_dict() after squash_mask()
        self._check_state_dict(activation_sparsifier)