1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
|
# -*- coding: utf-8 -*-
# Owner(s): ["module: unknown"]
import logging
import torch
from torch.nn.utils.parametrize import is_parametrized
import unittest
from torch.testing._internal.common_utils import TestCase, TEST_WITH_ASAN
from typing import Tuple
from torch import nn
import itertools
import math
import copy
from torch.ao.sparsity._experimental.data_sparsifier import BaseDataSparsifier, DataNormSparsifier
from torch.ao.sparsity._experimental.data_sparsifier.quantization_utils import post_training_sparse_quantize
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
class ImplementedSparsifier(BaseDataSparsifier):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def update_mask(self, name, data, **kwargs):
mask = self.get_mask(name)
mask[0] = 0
linear_state = self.state[name]
linear_state['step_count'] = linear_state.get('step_count', 0) + 1
class _BaseDataSparsiferTestCase(TestCase):
r"""This helper test class takes in any supported type of and runs some tests.
The user is required to pass in the data that needs to sparsified and the
runner will run some tests that needs to be passed in order for the data
type to be supported.
TODO: Change the structure by creating a separate test case class for each
member function
"""
def run_all_checks(self, data_list, data_with_config, defaults):
self.check_constructor(data_list, data_with_config, defaults)
self.check_squash_mask(data_list, data_with_config, defaults)
self.check_add_data(data_list, data_with_config, defaults)
self.check_step(data_list, data_with_config, defaults)
self.check_state_dict(data_list, data_with_config, defaults)
self.check_memory_reference(data_list, data_with_config, defaults)
@staticmethod
def _get_name_data_config(some_data, defaults=None):
if isinstance(some_data, Tuple):
# dealing with data_list
name, data = some_data
config = defaults
else:
# dealing with data_with_config
name, data, config = some_data['name'], some_data['data'], some_data['config']
return name, data, config
@staticmethod
def _make_sparsifier(data_list, data_with_config, defaults,
sparsifier_type=None, sparsifier_kwargs=None):
if sparsifier_type is None:
sparsifier = ImplementedSparsifier(data_list=data_list, **defaults)
else:
kwargs = copy.deepcopy(defaults)
kwargs.update(sparsifier_kwargs)
kwargs['data_list'] = data_list
sparsifier = sparsifier_type(**kwargs)
assert len(sparsifier.data_groups) == len(data_list)
for data_config_dict in data_with_config:
name, data, config = data_config_dict['name'], data_config_dict['data'], data_config_dict['config']
sparsifier.add_data(name=name, data=data, **config)
return sparsifier
def check_constructor(self, data_list, data_with_config, defaults, **kwargs):
sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs)
self.assertEqual(len(sparsifier.data_groups),
len(data_list) + len(data_with_config),
msg="Sparsifier data groups don't match the input "
f"({len(sparsifier.data_groups)} vs. "
f"{len(data_list) + len(data_with_config)}).")
all_data = data_list + data_with_config
for some_data in all_data:
name, _, config = self._get_name_data_config(some_data, defaults=defaults)
self.assertIn(name, sparsifier.data_groups)
self.assertEqual(sparsifier.data_groups[name], config)
def check_step(self, data_list, data_with_config, defaults, **kwargs):
sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs)
all_data = data_list + data_with_config
# Check data and mask before doing the step
for some_data in all_data:
name, data, _ = self._get_name_data_config(some_data)
data = sparsifier._extract_weight(data)
sparsified_data = sparsifier.get_data(name=name, return_original=False)
original_data = sparsifier.get_data(name=name, return_original=True)
mask = sparsifier.get_mask(name=name)
self.assertEqual(sparsified_data, data)
self.assertEqual(original_data, data)
self.assertEqualBroadcasting(mask[0], 1)
step_count = 3
for _ in range(0, step_count):
sparsifier.step()
for some_data in all_data:
name, data, _ = self._get_name_data_config(some_data)
data = sparsifier._extract_weight(data)
sparsified_data = sparsifier.get_data(name=name, return_original=False)
original_data = sparsifier.get_data(name=name, return_original=True)
mask = sparsifier.get_mask(name=name)
self.assertEqualBroadcasting(sparsified_data[0], 0)
self.assertEqual(original_data, data)
self.assertEqualBroadcasting(mask[0], 0)
assert 'step_count' in sparsifier.state[name]
assert sparsifier.state[name]['step_count'] == 3
def check_squash_mask(self, data_list, data_with_config, defaults, **kwargs):
sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs)
all_data = data_list + data_with_config
for some_data in all_data:
name, _, _ = self._get_name_data_config(some_data)
assert hasattr(sparsifier._container, name)
assert is_parametrized(sparsifier._container, name)
sparsifier.step()
sparsifier.squash_mask()
for some_data in all_data:
name, _, _ = self._get_name_data_config(some_data)
assert not is_parametrized(sparsifier._container, name) # not parametrized anymore
with self.assertRaises(ValueError):
sparsifier.get_data(name, return_original=True)
def check_add_data(self, data_list, data_with_config, defaults, **kwargs):
sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs)
all_data = data_list + data_with_config
for some_data in all_data:
name1, data1, config = self._get_name_data_config(some_data, defaults=defaults)
data1 = sparsifier._extract_weight(data1)
data1_old = copy.deepcopy(data1)
assert torch.all(data1 == sparsifier.get_data(name=name1))
sparsifier.step()
mask = sparsifier.get_mask(name1)
data2 = torch.randn(data1.shape) # add another data with the same shape as original data
sparsifier.add_data(name=name1, data=data2)
assert torch.all(data2 == sparsifier.get_data(name=name1))
assert torch.all(sparsifier.get_mask(name1) == mask) # mask should not change
assert torch.all(data1_old == data1)
assert sparsifier.data_groups[name1] == config # if replaced old_config should match new config
def check_state_dict(self, data_list, data_with_config, defaults, **kwargs):
sparsifier1 = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs)
sparsifier2 = self._make_sparsifier(data_list=[data_list[0]], data_with_config=[], defaults=defaults, **kwargs)
sparsifier1.step()
state_dict1 = sparsifier1.state_dict()
assert sparsifier1.state != sparsifier2.state
name, _, _ = self._get_name_data_config(data_list[0])
self.assertNotEqual(sparsifier1.get_mask(name), sparsifier2.get_mask(name))
sparsifier2.load_state_dict(state_dict1)
assert len(sparsifier1.state) == len(sparsifier2.state)
assert len(sparsifier1.data_groups) == len(sparsifier2.data_groups)
state1 = state_dict1['state']
for name in state1.keys():
# compare mask
assert name in sparsifier2.state
assert 'mask' in sparsifier2.state[name]
assert 'mask' in sparsifier1.state[name]
mask1, mask2 = state1[name]['mask'], sparsifier2.state[name]['mask']
assert mask1.is_sparse and not mask2.is_sparse
assert torch.all(mask1.to_dense() == mask2) # mask1 is stored as sparse coo now
# compare data_groups
dg1, dg2 = sparsifier1.data_groups, sparsifier2.data_groups
assert name in dg1 and name in dg2
assert dg1[name] == dg2[name]
# compare container
container1, container2 = sparsifier1._container, sparsifier2._container
assert torch.all(getattr(container1, name) == getattr(container2, name))
assert is_parametrized(container1, name) == is_parametrized(container2, name)
if is_parametrized(container1, name):
param1 = getattr(container1.parametrizations, name)[0]
param2 = getattr(container2.parametrizations, name)[0]
assert hasattr(param1, 'mask')
assert hasattr(param2, 'mask')
self.assertEqual(param1.__dict__, param2.__dict__)
def check_memory_reference(self, data_list, data_with_config, defaults, **kwargs):
"""Checks if the data is truly "attached" to the sparsifier. Meaning, when the
data is changed outside of the sparsifier, the changes must be reflected on the data
inside the data sparsifier as well.
This makes sure that the sparsifier is holding the memory reference of the data and
not copies.
This test modifies the data and asserts that data in the sparsifier is changed as well
"""
sparsifier = self._make_sparsifier(data_list, data_with_config, defaults=defaults, **kwargs)
all_data = data_list + data_with_config
for some_data in all_data:
name, data, _ = self._get_name_data_config(some_data)
weight = sparsifier._extract_weight(data)
weight.data = weight + torch.randn(*weight.shape)
contained_data = sparsifier.get_data(name=name)
assert id(weight.data) == id(contained_data.data)
assert torch.all(contained_data == weight)
class _NormDataSparsifierTestCase(_BaseDataSparsiferTestCase):
r"""This helper test class takes in any supported type of and runs some tests.
This inherits the TestBaseDataSparsifierRuner wherein some functions are
over-ridden to take accomodate the specific sparsifier.
TODO: Change the structure by creating a separate test case class for each
member function
"""
def run_all_checks(self, data_list, defaults, data_with_config, norm_type='L1'):
assert norm_type in ['L1', 'L2']
kwargs = {
'sparsifier_type': DataNormSparsifier,
'sparsifier_kwargs': {'norm': norm_type}
}
self.check_constructor(data_list, data_with_config, defaults, **kwargs)
self.check_squash_mask(data_list, data_with_config, defaults, **kwargs)
self.check_add_data(data_list, data_with_config, defaults, **kwargs)
self.check_state_dict(data_list, data_with_config, defaults, **kwargs)
self.check_step(data_list, data_with_config, defaults, norm_type=norm_type)
self.check_step_2_of_4(norm_type=norm_type)
self.check_sparsity_level(data_list, data_with_config, defaults, norm_type=norm_type)
self.check_memory_reference(data_list, data_with_config, defaults, **kwargs)
@staticmethod
def _get_bounds_on_actual_sparsity(config, tensor_shape):
r"""This function gets the bounds on actual sparsity.
Note::
Although we specify the sparsity_level parameter, this does not mean that
the actual sparsity obtained after sparsification is the same as sparsity_level.
The actual sparsity depends largely on the shape and the data itself.
"""
sparsity_level = config['sparsity_level']
zeros_per_block = config['zeros_per_block']
sparse_block_shape = config['sparse_block_shape']
height, width = tensor_shape[-2], tensor_shape[-1]
block_height, block_width = sparse_block_shape
number_blocks = math.ceil(height / block_height) * math.ceil(width / block_width)
values_per_block = block_height * block_width
if zeros_per_block == 0:
return (1.0, 1.0)
else:
# min value assumes zeros_per_block is 1
min_values_sparsified = round(number_blocks * sparsity_level)
# max value assumes actual zeros_per_block
max_values_sparsified = min_values_sparsified * min(values_per_block, zeros_per_block)
lower_bound = min_values_sparsified / (height * width)
upper_bound = min(1.0, max_values_sparsified / (height * width))
lower_bound, upper_bound = round(lower_bound, 3), round(upper_bound, 3)
return lower_bound, upper_bound
def check_step(self, data_list, data_with_config, defaults, norm_type='L1'):
sparsifier = self._make_sparsifier(data_list, data_with_config, defaults,
sparsifier_type=DataNormSparsifier,
sparsifier_kwargs={'norm': norm_type})
all_data = data_list + data_with_config
# mask before step() should not be sparsified
for some_data in all_data:
name, _, _ = self._get_name_data_config(some_data)
mask = sparsifier.get_mask(name=name)
assert (1.0 - mask.mean()) == 0 # checking sparsity level is 0
sparsifier.step()
for some_data in all_data:
name, _, _ = self._get_name_data_config(some_data)
mask = sparsifier.get_mask(name=name)
config = sparsifier.data_groups[name]
lb, ub = self._get_bounds_on_actual_sparsity(config, mask.shape)
mask = mask.to(torch.float)
actual_sparsity = round(1 - mask.mean().item(), 3)
assert actual_sparsity >= lb and actual_sparsity <= ub
assert actual_sparsity > 0.0 # exact sparsity level cannot be achieved due to size of tensor
iters_before_collapse = 100
test_sparsifier = DataNormSparsifier(sparsity_level=0.5,
sparse_block_shape=(1, 4),
zeros_per_block=4,
norm=norm_type)
for _ in range(iters_before_collapse):
new_data = torch.randn(20, 20)
test_sparsifier.add_data(name='test_data', data=new_data)
test_sparsifier.step()
mask = test_sparsifier.get_mask(name='test_data')
mask = mask.to(torch.float)
assert (1.0 - mask.mean().item()) > 0 # some sparsity achieved
def check_step_2_of_4(self, norm_type):
# overriding default config for test purposes
default_config = {'sparsity_level': 1.0, 'zeros_per_block': 2, 'sparse_block_shape': (1, 4)}
data_list = [('test_data', torch.randn(4, 4))]
sparsifier = DataNormSparsifier(data_list=data_list, norm=norm_type, **default_config)
sparsifier.step()
for some_data in data_list:
name, _ = some_data
mask = sparsifier.get_mask(name=name)
mask = mask.to(torch.float)
self.assertAlmostEqual(1.0 - mask.mean().item(), 0.5, places=2)
for row in mask:
for idx in range(0, len(row), 4):
block = row[idx:idx + 4]
block, _ = block.sort()
assert (block[:2] == 0).all()
assert (block[2:] != 0).all()
def check_sparsity_level(self, data_list, data_with_config, defaults, norm_type='L1'):
sparsity_levels = [-1.0, 0.0, 0.5, 1.0, 2.0]
sparse_block_shapes = [(1, 1), (1, 4), (2, 2), (4, 1)]
zeros_per_blocks = [0, 1, 2, 3, 4]
sparsifier = DataNormSparsifier(data_list=data_list, norm=norm_type)
testcases = itertools.tee(itertools.product(sparsity_levels,
sparse_block_shapes,
zeros_per_blocks))
assert len(data_with_config) > 0 and 'name' in data_with_config[0] and 'data' in data_with_config[0]
# get some data
name, data = data_with_config[0]['name'], data_with_config[0]['data']
for idx, (sl, sbs, zpb) in enumerate(testcases[0]):
new_name = f'{name}_{idx}'
if zpb > sbs[0] * sbs[1]:
continue
current_config = {'sparsity_level': sl, 'sparse_block_shape': sbs, 'zeros_per_block': zpb}
sparsifier.add_data(name=new_name, data=data, **current_config)
if zpb > sbs[0] * sbs[1]:
continue
sparsifier.step()
sparsifier.squash_mask()
for idx, (sl, sbs, zpb) in enumerate(testcases[0]):
new_name = f'{name}_{idx}'
sparsified_data = sparsifier.get_data(name=new_name, original=False)
# sparse mask
sparse_mask = (sparsified_data == 0).float()
if zpb == 0:
assert sparse_mask.mean() == 0
else:
# Ratio of individual zeros in the tensor
true_sl = min(max(sl, 0.0), 1.0)
true_sl = true_sl * zpb / sbs[0] / sbs[1]
assert sparse_mask.mean() == true_sl
class TestBaseDataSparsifier(_BaseDataSparsiferTestCase):
"""To add unit tests to support new data types for the BaseDataSparsifier, create the following
data_list: List of tuples of name, data to be added to the constructor
defaults: default config for the above data in data_list
data_with_config: list of dictionaries defining name, data and config (look test_tensors())
Once the above is done, create an instance of TestBaseDataSparsifierType and call all the run_tests()
"""
def test_tensors(self):
tensor1, tensor2, tensor3 = torch.randn(3, 3), torch.randn(4, 4), torch.randn(5, 5)
tensor4, tensor5 = torch.randn(1, 1), torch.randn(4, 4)
data_list = [('tensor1', tensor1), ('tensor2', tensor2), ('tensor3', tensor3)]
defaults = {'test': 3}
data_with_config = [
{
'name': 'tensor4', 'data': tensor4, 'config': {'test': 7}
},
{
'name': 'tensor5', 'data': tensor5, 'config': {'test': 8}
},
]
self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config)
def test_nn_parameters(self):
param1, param2, param3 = nn.Parameter(torch.randn(3, 3)), nn.Parameter(torch.randn(4, 4)), nn.Parameter(torch.randn(5, 5))
param4, param5 = nn.Parameter(torch.randn(1, 1)), nn.Parameter(torch.randn(4, 4))
data_list = [('param1', param1), ('param2', param2), ('param3', param3)]
defaults = {'test': 3}
data_with_config = [
{
'name': 'param4', 'data': param4, 'config': {'test': 7}
},
{
'name': 'param5', 'data': param5, 'config': {'test': 8}
},
]
self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config)
def test_nn_embeddings(self):
emb1, emb2, = nn.Embedding(10, 3), nn.Embedding(20, 3)
emb1_bag, emb2_bag = nn.EmbeddingBag(10, 3), nn.EmbeddingBag(20, 3)
emb3, emb3_bag = nn.Embedding(15, 3), nn.EmbeddingBag(20, 3)
data_list = [('emb1', emb1), ('emb1_bag', emb1_bag), ('emb2', emb2), ('emb2_bag', emb2_bag)]
defaults = {'test': 3}
data_with_config = [
{
'name': 'emb3', 'data': emb3, 'config': {'test': 7}
},
{
'name': 'emb3_bag', 'data': emb3_bag, 'config': {'test': 8}
},
]
self.run_all_checks(data_list=data_list, defaults=defaults, data_with_config=data_with_config)
class TestNormDataSparsifiers(_NormDataSparsifierTestCase):
"""To add unit tests to support new data types for the NormDataSparsifier, create the following
data_list: List of tuples of name, data to be added to the constructor
defaults: default config for the above data in data_list
data_with_config: list of dictionaries defining name, data and config (look test_tensors())
Once the above is done, create an instance of _NormDataSparsifierTestRunner and call run_tests()
"""
def test_tensors(self):
tensor1, tensor2, tensor3 = torch.randn(1, 10), torch.randn(4, 4), torch.randn(1, 5)
tensor4, tensor5 = torch.randn(1, 2), torch.randn(4, 4)
data_list = [('tensor1', tensor1), ('tensor2', tensor2), ('tensor3', tensor3)]
defaults = {'sparsity_level': 0.5, 'sparse_block_shape': (1, 4), 'zeros_per_block': 4}
data_with_config = [
{
'name': 'tensor4', 'data': tensor4,
'config': {'sparsity_level': 0.7, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6}
},
{
'name': 'tensor5', 'data': tensor5,
'config': {'sparsity_level': 0.3, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6}
},
]
self.run_all_checks(data_list=data_list, defaults=defaults,
data_with_config=data_with_config, norm_type='L1')
self.run_all_checks(data_list=data_list, defaults=defaults,
data_with_config=data_with_config, norm_type='L2')
def test_nn_parameters(self):
param1, param2, param3 = nn.Parameter(torch.randn(1, 8)), nn.Parameter(torch.randn(4, 4)), nn.Parameter(torch.randn(5, 5))
param4, param5 = nn.Parameter(torch.randn(10, 10)), nn.Parameter(torch.randn(4, 4))
data_list = [('param1', param1), ('param2', param2), ('param3', param3)]
defaults = {'sparsity_level': 0.5, 'sparse_block_shape': (1, 4), 'zeros_per_block': 4}
data_with_config = [
{
'name': 'param4', 'data': param4,
'config': {'sparsity_level': 0.7, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6}
},
{
'name': 'param5', 'data': param5,
'config': {'sparsity_level': 0.3, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6}
},
]
self.run_all_checks(data_list=data_list, defaults=defaults,
data_with_config=data_with_config, norm_type='L1')
self.run_all_checks(data_list=data_list, defaults=defaults,
data_with_config=data_with_config, norm_type='L2')
def test_nn_embeddings(self):
emb1, emb2, = nn.Embedding(10, 3), nn.Embedding(20, 3)
emb1_bag, emb2_bag = nn.EmbeddingBag(10, 3), nn.EmbeddingBag(20, 3)
emb3, emb3_bag = nn.Embedding(15, 3), nn.EmbeddingBag(20, 3)
data_list = [('emb1', emb1), ('emb1_bag', emb1_bag), ('emb2', emb2), ('emb2_bag', emb2_bag)]
defaults = {'sparsity_level': 0.5, 'sparse_block_shape': (1, 4), 'zeros_per_block': 4}
data_with_config = [
{
'name': 'emb3', 'data': emb3,
'config': {'sparsity_level': 0.7, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6}
},
{
'name': 'emb3_bag', 'data': emb3_bag,
'config': {'sparsity_level': 0.3, 'sparse_block_shape': (2, 3), 'zeros_per_block': 6}
},
]
self.run_all_checks(data_list=data_list, defaults=defaults,
data_with_config=data_with_config, norm_type='L1')
self.run_all_checks(data_list=data_list, defaults=defaults,
data_with_config=data_with_config, norm_type='L2')
class Model(nn.Module):
def __init__(self):
super().__init__()
self.emb1 = nn.Embedding(100, 3)
self.embbag1 = nn.EmbeddingBag(200, 32)
self.emb_seq = nn.Sequential(nn.Embedding(150, 3), nn.EmbeddingBag(100, 3))
self.linear1 = nn.Linear(32, 32)
self.linear2 = nn.Linear(16, 16)
class TestQuantizationUtils(TestCase):
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN due to address sanitization")
def test_ptq_sparsify_first(self):
"""The expectation is post_training_sparse_quantize function
1. Takes in a model
2. Sparsifies the embeddings
3. Quantize the embeddings
This unit test checks that
1. Embeddings and EmbeddingBags are sparsified to the right sparsity levels
2. Embeddings and EmbeddingBags are quantized
3. Linear modules are not quanitzed
"""
model = Model()
sparse_config = {'sparsity_level': 0.80, 'sparse_block_shape': (1, 1)}
select_embeddings = [model.embbag1, model.emb1]
post_training_sparse_quantize(model,
data_sparsifier_class=DataNormSparsifier,
sparsify_first=True,
select_embeddings=select_embeddings,
**sparse_config)
assert type(model.emb1) == torch.nn.quantized.modules.embedding_ops.Embedding
assert type(model.embbag1) == torch.nn.quantized.modules.embedding_ops.EmbeddingBag
assert type(model.emb_seq[0] == nn.Embedding)
assert type(model.emb_seq[1] == nn.EmbeddingBag)
assert type(model.linear1) == nn.Linear
assert type(model.linear2) == nn.Linear
dequant_emb1 = torch.dequantize(model.emb1.weight())
dequant_embbag1 = torch.dequantize(model.embbag1.weight())
threshold = 1e-2
sl_emb1 = (torch.abs(dequant_emb1) < threshold).float().mean()
sl_embbag1 = (torch.abs(dequant_embbag1) < threshold).float().mean()
assert abs(sl_emb1 - 0.80) <= 0.05 # +- 5% leeway
assert abs(sl_embbag1 - 0.80) <= 0.05 # +- 5% leeway
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN due to address sanitization")
def test_ptq_quantize_first(self):
"""The expectation is post_training_sparse_quantize function
1. Takes in a model
2. Quantize the embeddings
3. Sparsifies the embeddings
This unit test checks that
1. Embeddings and EmbeddingBags are sparsified to the right sparsity levels
2. Embeddings and EmbeddingBags are quantized
3. Linear modules are not quanitzed
"""
model = Model()
sparse_config = {'sparsity_level': 0.8, 'sparse_block_shape': (1, 1)}
post_training_sparse_quantize(model, DataNormSparsifier, sparsify_first=False, **sparse_config)
assert type(model.emb1) == torch.nn.quantized.modules.embedding_ops.Embedding
assert type(model.embbag1) == torch.nn.quantized.modules.embedding_ops.EmbeddingBag
assert type(model.emb_seq[0] == torch.nn.quantized.modules.embedding_ops.Embedding)
assert type(model.emb_seq[1] == torch.nn.quantized.modules.embedding_ops.EmbeddingBag)
assert type(model.linear1) == nn.Linear # not quantized
assert type(model.linear2) == nn.Linear # not quantized
dequant_emb1 = torch.dequantize(model.emb1.weight())
dequant_embbag1 = torch.dequantize(model.embbag1.weight())
dequant_emb_seq_0 = torch.dequantize(model.emb_seq[0].weight())
dequant_emb_seq_1 = torch.dequantize(model.emb_seq[1].weight())
# higher threshold as quantization occurs before sparsity
threshold = 1 # zero points seem to have higher magnitude with sparsity occuring after
sl_emb1 = (torch.abs(dequant_emb1) < threshold).float().mean()
sl_embbag1 = (torch.abs(dequant_embbag1) < threshold).float().mean()
sl_emb_seq_0 = (torch.abs(dequant_emb_seq_0) < threshold).float().mean()
sl_emb_seq_1 = (torch.abs(dequant_emb_seq_1) < threshold).float().mean()
assert abs(sl_emb1 - 0.80) <= 0.05 # +- 5% leeway
assert abs(sl_embbag1 - 0.80) <= 0.05 # +- 5% leeway
assert abs(sl_emb_seq_0 - 0.80) <= 0.05 # +- 5% leeway
assert abs(sl_emb_seq_1 - 0.80) <= 0.05 # +- 5% leeway
|