File: test_kernels.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (313 lines) | stat: -rw-r--r-- 12,025 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# -*- coding: utf-8 -*-
# Owner(s): ["module: unknown"]

from torch.testing._internal.common_utils import run_tests

import copy
import numpy as np
import io
import logging
from itertools import product

import torch
import torch.ao.quantization as tq

from torch import nn
from torch.ao.sparsity.sparsifier.utils import fqn_to_module

from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.common_quantized import (
    override_cpu_allocator_for_qnnpack,
    override_qengines,
    qengine_is_qnnpack,
    qengine_is_fbgemm,
    qengine_is_onednn,
    qengine_is_x86,
)

# TODO: Once more test files are created, move the contents to a ao folder.

logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)

class TestQuantizedSparseKernels(TestCase):
    @override_qengines
    def test_sparse_qlinear(self):
        batch_size = 12
        input_channels = 16
        output_channels = 4
        decimal_val = 4
        row_block_size = 1
        col_block_size = 4

        # X86 implementation of sparse ops in qnnpack only support
        # block pattern 1x4.
        # arm kernels have support for both 1x4 and 8x1.
        # This distinction is only because x86 implementations exist
        # only to enable testing of integration path.
        # We do plan to add 8x1 as well so that testing does not have to
        # special case like this. At the moment it is deprioritized due
        # to other higher priority works.
        if qengine_is_qnnpack() and not (row_block_size == 1 and col_block_size == 4):
            return
        # ONEDNN and X86 do not support this yet
        if qengine_is_onednn() or qengine_is_x86():
            return

        dense_prepack = torch.ops.quantized.linear_prepack
        dense_qlinear = torch.ops.quantized.linear
        dense_qlinear_dynamic = torch.ops.quantized.linear_dynamic

        sparse_prepack = torch.ops.sparse.qlinear_prepack
        sparse_qlinear = torch.ops.sparse.qlinear
        sparse_qlinear_dynamic = torch.ops.sparse.qlinear_dynamic

        X_scale = 0.2
        X_zp = 2
        X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32)
        float_bias = torch.randn(output_channels, dtype=torch.float32)

        W_scales = torch.rand(output_channels, dtype=torch.float32)
        W_zps = torch.zeros(output_channels, dtype=torch.int32)
        W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32)

        with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
            X_q = torch.quantize_per_tensor(
                X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8
            )

            for use_channelwise, dynamic_mode in product([True, False], [True, False]):
                if qengine_is_fbgemm() and dynamic_mode:
                    logging.info("dynamic sparse qlinear is only available in qnnpack")
                    continue
                if qengine_is_qnnpack() and not dynamic_mode:
                    logging.info("static sparse qlinear is only available in fbgemm")
                    continue
                if use_channelwise:
                    W_q = torch.quantize_per_channel(
                        W_fp32, scales=W_scales, zero_points=W_zps, axis=0, dtype=torch.qint8
                    )
                else:
                    W_q = torch.quantize_per_tensor(
                        W_fp32, scale=W_scales[0], zero_point=W_zps[0], dtype=torch.qint8
                    )

                Y_scale = 1.1234
                Y_zp = 5
                W_prepack_dense = dense_prepack(W_q, float_bias)
                W_prepack_sparse = sparse_prepack(W_q, float_bias, row_block_size, col_block_size)

                if dynamic_mode:
                    Y = sparse_qlinear_dynamic(X_fp32, W_prepack_sparse)
                    Y_ref = dense_qlinear_dynamic(X_fp32, W_prepack_dense)

                    np.testing.assert_array_almost_equal(Y_ref.numpy(), Y.numpy(), decimal=decimal_val)
                else:
                    Y_q = sparse_qlinear(X_q, W_prepack_sparse, Y_scale, Y_zp)
                    Y_q_ref = dense_qlinear(X_q, W_prepack_dense, Y_scale, Y_zp)

                    np.testing.assert_array_almost_equal(
                        Y_q_ref.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=decimal_val
                    )


def _sparse_layer_test_helper(
    model_class,
    sparse_mapping,
    ref_mapping,
    qconfig_dict,
    fqn_to_check,
    test_class,
    test_scripting,
):
    # SET UP TEST PARAMETERS, INPUTS AND WEIGHTS
    # ------------------------------------------
    batch_size = 12
    input_channels = 4
    output_channels = 7
    model = model_class(input_channels, output_channels)

    # For sparse kernels both the activation and weight ZP = 0
    X_scale = 0.2
    X_zp = 2
    W_scale = 1e-2
    W_zp = 0

    X_fp32 = torch.randn(batch_size, input_channels, dtype=torch.float32)
    float_bias = torch.randn(output_channels, dtype=torch.float32)

    # generate a weight which we'll insert into the model
    W_fp32 = torch.randn(output_channels, input_channels, dtype=torch.float32)
    mask = torch.randint(0, 2, W_fp32.shape)
    W_fp32 *= mask
    with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
        X_q = torch.quantize_per_tensor(
            X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8
        )
        X_fp32 = X_q.dequantize()

        W_q = torch.quantize_per_tensor(W_fp32, W_scale, W_zp, torch.qint8)

        # PREPARE MODELS FOR QUANTIZATION
        # -------------------------------
        model.linear.weight = nn.Parameter(W_q.dequantize())
        model.eval()

        # Add `sparse_params` to the model. The test for correct
        # sparse_param addition is in the sparsifier tests
        model.linear.sparse_params = {"sparse_block_shape": (1, 4)}

        # generate model versions
        qmodel = copy.deepcopy(model)
        sqmodel = copy.deepcopy(model)

        # generate model versions and apply qconfigs
        tq.propagate_qconfig_(qmodel, qconfig_dict)
        tq.propagate_qconfig_(sqmodel, qconfig_dict)

        tq.prepare(qmodel, inplace=True)
        tq.prepare(sqmodel, inplace=True)

        # calibrate
        with torch.no_grad():
            qmodel(X_fp32)
            sqmodel(X_fp32)

        # ACTUAL TESTING BEGINS HERE
        # --------------------------

        # Make sure the quantization parameters are computed the same way
        qparams = qmodel.linear.qconfig.weight().calculate_qparams()
        sqparams = sqmodel.linear.qconfig.weight().calculate_qparams()
        test_class.assertEqual(qparams, sqparams)

        sqmodule_to_check = fqn_to_module(sqmodel, fqn_to_check)
        sqmodule_start_class = sqmodule_to_check.__class__
        sqmodule_expected_converted_class = sparse_mapping[sqmodule_start_class]

        qmodule_to_check = fqn_to_module(qmodel, fqn_to_check)
        qmodule_start_class = qmodule_to_check.__class__
        qmodule_expected_converted_class = ref_mapping[qmodule_start_class]

        # need to determine whether dynamic quantization is being performed since
        # input dtype will be different at the end
        is_dynamic = isinstance(
            qmodule_to_check.activation_post_process, tq.PlaceholderObserver
        )

        tq.convert(sqmodel, inplace=True, mapping=sparse_mapping)
        tq.convert(qmodel, inplace=True, mapping=ref_mapping)

        # this code is a duplicate of above since the references do not
        # update to the post-convert modules
        sqmodule_to_check = fqn_to_module(sqmodel, fqn_to_check)
        qmodule_to_check = fqn_to_module(qmodel, fqn_to_check)

        # check that the modules were converted as expected
        assert isinstance(
            sqmodule_to_check, sqmodule_expected_converted_class
        ), "Convert failed"
        assert isinstance(
            qmodule_to_check, qmodule_expected_converted_class
        ), "Mapping failed"

        row_block_size, col_block_size = sqmodel.linear._packed_params._weight_bias()[
            2:
        ]
        assert row_block_size == 1 and col_block_size == 4

        # only run during serialization/deserialization tests
        # makes sure script/save/load doesn't malform the sqmodel
        if test_scripting:
            scripted_sqmodel = torch.jit.script(sqmodel)
            scripted_sqmodel.eval()
            buffer = io.BytesIO()
            torch.jit.save(scripted_sqmodel, buffer)
            buffer.seek(0)
            sqmodel = torch.jit.load(buffer)

        # use correct input dtype
        if is_dynamic:
            Y_ref = qmodel(X_fp32)
            Y_hat = sqmodel(X_fp32)
            test_class.assertEqual(Y_ref, Y_hat)
        else:
            Y_ref = qmodel(X_q)
            Y_hat = sqmodel(X_q)
            test_class.assertEqual(Y_ref.dequantize(), Y_hat.dequantize())

class SparseQuantizedModel(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.linear = nn.Linear(in_channels, out_channels)

    def forward(self, x):
        return self.linear(x)

class TestQuantizedSparseLayers(TestCase):
    @override_qengines
    def test_sparse_qlinear(self):
        # Note: At the moment, for sparse kernels
        # fbgemm supports only static quantized sparse linear
        # qnnpack supports only dynamically quantized sparse linear
        # Hence we have two different tests.
        # fbgemm tests static flow, qnnpack tests dynamic.
        # Should be unified later on and tests should be fixed
        # appropriately.
        model_class = SparseQuantizedModel
        fqn_to_check = "linear"
        if qengine_is_fbgemm():
            sparse_mapping = tq.get_default_static_sparse_quant_module_mappings()
            ref_mapping = tq.get_default_static_quant_module_mappings()
            qconfig_dict = {nn.Linear: tq.get_default_qconfig("fbgemm")}
        elif qengine_is_qnnpack():
            sparse_mapping = tq.get_default_dynamic_sparse_quant_module_mappings()
            ref_mapping = tq.get_default_dynamic_quant_module_mappings()
            qconfig_dict = {nn.Linear: tq.qconfig.default_dynamic_qconfig}
        else:
            return

        _sparse_layer_test_helper(
            model_class=model_class,
            sparse_mapping=sparse_mapping,
            ref_mapping=ref_mapping,
            qconfig_dict=qconfig_dict,
            fqn_to_check=fqn_to_check,
            test_class=self,
            test_scripting=False,
        )

    @override_qengines
    def test_sparse_qlinear_serdes(self):
        # Note: At the moment, for sparse kernels
        # fbgemm supports only static quantized sparse linear
        # qnnpack supports only dynamically quantized sparse linear
        # Hence we have two different tests.
        # fbgemm tests static flow, qnnpack tests dynamic.
        # Should be unified later on and tests should be fixed
        # appropriately.
        model_class = SparseQuantizedModel
        fqn_to_check = "linear"
        if qengine_is_fbgemm():
            sparse_mapping = tq.get_default_static_sparse_quant_module_mappings()
            ref_mapping = tq.get_default_static_quant_module_mappings()
            qconfig_dict = {nn.Linear: tq.get_default_qconfig("fbgemm")}
        elif qengine_is_qnnpack():
            sparse_mapping = tq.get_default_dynamic_sparse_quant_module_mappings()
            ref_mapping = tq.get_default_dynamic_quant_module_mappings()
            qconfig_dict = {nn.Linear: tq.qconfig.default_dynamic_qconfig}
        else:
            return

        _sparse_layer_test_helper(
            model_class=model_class,
            sparse_mapping=sparse_mapping,
            ref_mapping=ref_mapping,
            qconfig_dict=qconfig_dict,
            fqn_to_check=fqn_to_check,
            test_class=self,
            test_scripting=True,
        )


if __name__ == "__main__":
    run_tests()