File: test_qlinear_packed_params.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (161 lines) | stat: -rw-r--r-- 6,240 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python3
# Owner(s): ["oncall: mobile"]

import tempfile
import torch
from torch.ao.nn.sparse.quantized.dynamic.linear import Linear
from torch.testing._internal.common_quantized import (
    qengine_is_qnnpack,
    override_quantized_engine,
    override_cpu_allocator_for_qnnpack
)
from torch.testing._internal.common_utils import TestCase

class TestQlinearPackedParams(TestCase):
    def test_qlinear_packed_params(self, allow_non_zero_zero_points=False):
        # copied from https://pytorch.org/docs/stable/sparse.html#csr-tensor-operations,
        # so row/col block indices match that example, but with blocks and
        # scaled rows
        weight_fp32 = torch.Tensor([
            [0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0],
            [6, 6, 6, 6, 12, 12, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        ])

        row_block_size = 1
        col_block_size = 4
        out_features = weight_fp32.shape[0]
        in_features = weight_fp32.shape[1]

        scales = [2.0, 6.0, 12.0]
        zero_points = [
            ((i + 1) if allow_non_zero_zero_points else 0) for i in range(out_features)
        ]
        dtype = torch.qint8

        wide_weight_fp32 = torch.zeros((3, 4008))  # 4000 is tile width for Fbgemm
        wide_weight_fp32[0][0] = 4
        wide_weight_fp32[0][4004] = 6
        wide_weight_fp32[1][0] = 8

        per_tensor_small = (
            torch.quantize_per_tensor(
                weight_fp32,
                scales[0],
                zero_points[0],
                dtype
            ),
            True,
            [0, 1, 3, 3],
            [2, 0, 1],
            [x + (1 if allow_non_zero_zero_points else 0) for x in [
                1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6
            ]],
        )

        per_channel_small = (
            torch.quantize_per_channel(
                weight_fp32,
                torch.Tensor(scales),
                torch.Tensor(zero_points).to(torch.int),
                0,  # axis = 0
                dtype,
            ),
            False,
            [0, 1, 3, 3],
            [2, 0, 1],
            [x + ([1, 2, 2][i // 4] if allow_non_zero_zero_points else 0) for (i, x) in enumerate([
                1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2
            ])],
        )

        per_tensor_large = (
            torch.quantize_per_tensor(
                wide_weight_fp32,
                scales[0],
                zero_points[0],
                dtype,
            ),
            True,
            [0, 2, 3, 3],
            [0, 1001, 0],
            [x + (1 if allow_non_zero_zero_points else 0) for x in [
                2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0
            ]],
        )

        for (weight, is_per_tensor_quantized, expected_row_block_indices, expected_col_block_indices, expected_weights) in [
            per_tensor_small, per_channel_small, per_tensor_large
        ]:
            lin = Linear(
                out_features=weight.shape[0],
                in_features=weight.shape[1],
                row_block_size=row_block_size,
                col_block_size=col_block_size,
                bias=True,
                dtype=dtype,
            )

            bias = torch.ones(size=(weight.shape[0],))

            lin.set_weight_bias(weight, bias, row_block_size, col_block_size)

            serialized = lin._packed_params._packed_params.__getstate__()

            (
                _,  # version
                bias_,
                out_features_block_size_,
                in_features_block_size_,
                weight_scales_,
                weight_zero_points_,
                quantization_scheme_,
                row_block_indices_,
                col_block_indices_,
                weights_,
                output_channels_,
                input_channels_
            ) = serialized[0]

            # Test Serialization
            self.assertEqual(bias_, bias)
            self.assertEqual(out_features_block_size_, row_block_size)
            self.assertEqual(in_features_block_size_, col_block_size)
            self.assertEqual(weight_scales_, [scales[0]] if is_per_tensor_quantized else scales)
            self.assertEqual(weight_zero_points_, [zero_points[0]] if is_per_tensor_quantized else zero_points)
            self.assertEqual(quantization_scheme_, is_per_tensor_quantized)
            self.assertEqual(row_block_indices_, expected_row_block_indices)
            self.assertEqual(col_block_indices_, expected_col_block_indices)
            self.assertEqual(weights_.tolist(), [v + 128 for v in expected_weights])  # weights are serialized as +128
            self.assertEqual(output_channels_, weight.shape[0])
            self.assertEqual(input_channels_, weight.shape[1])

            # Test Unpacking
            (weights_, bias_, out_features_block_size_, in_features_block_size_) = lin._weight_bias()
            self.assertEqual(torch.dequantize(weights_), torch.dequantize(weight))
            self.assertEqual(bias_, bias)
            self.assertEqual(out_features_block_size_, row_block_size)
            self.assertEqual(in_features_block_size_, col_block_size)

            # Test Deserialization
            with tempfile.TemporaryFile() as file_buff:
                torch.save(lin, file_buff)
                file_buff.seek(0)
                lin2 = torch.load(file_buff)
                self.assertEqual(lin._weight_bias(), lin2._weight_bias())
                # Serialize -> Deserialize -> Serialize should match Serialize
                self.assertEqual(serialized, lin2._packed_params._packed_params.__getstate__())

                # Test that op output is preserved by serialize -> deserialize
                if qengine_is_qnnpack():
                    x = torch.rand(size=(1, weight.shape[1]))
                    y1 = lin(x)
                    y2 = lin2(x)
                    self.assertEqual(y1, y2)


    def test_qlinear_packed_params_qnnpack(self):
        torch.manual_seed(0)
        with override_quantized_engine('qnnpack'):
            with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
                self.test_qlinear_packed_params(allow_non_zero_zero_points=True)