1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#!/usr/bin/env python3
# Owner(s): ["oncall: mobile"]
import tempfile
import torch
from torch.ao.nn.sparse.quantized.dynamic.linear import Linear
from torch.testing._internal.common_quantized import (
qengine_is_qnnpack,
override_quantized_engine,
override_cpu_allocator_for_qnnpack
)
from torch.testing._internal.common_utils import TestCase
class TestQlinearPackedParams(TestCase):
def test_qlinear_packed_params(self, allow_non_zero_zero_points=False):
# copied from https://pytorch.org/docs/stable/sparse.html#csr-tensor-operations,
# so row/col block indices match that example, but with blocks and
# scaled rows
weight_fp32 = torch.Tensor([
[0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0],
[6, 6, 6, 6, 12, 12, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
])
row_block_size = 1
col_block_size = 4
out_features = weight_fp32.shape[0]
in_features = weight_fp32.shape[1]
scales = [2.0, 6.0, 12.0]
zero_points = [
((i + 1) if allow_non_zero_zero_points else 0) for i in range(out_features)
]
dtype = torch.qint8
wide_weight_fp32 = torch.zeros((3, 4008)) # 4000 is tile width for Fbgemm
wide_weight_fp32[0][0] = 4
wide_weight_fp32[0][4004] = 6
wide_weight_fp32[1][0] = 8
per_tensor_small = (
torch.quantize_per_tensor(
weight_fp32,
scales[0],
zero_points[0],
dtype
),
True,
[0, 1, 3, 3],
[2, 0, 1],
[x + (1 if allow_non_zero_zero_points else 0) for x in [
1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6
]],
)
per_channel_small = (
torch.quantize_per_channel(
weight_fp32,
torch.Tensor(scales),
torch.Tensor(zero_points).to(torch.int),
0, # axis = 0
dtype,
),
False,
[0, 1, 3, 3],
[2, 0, 1],
[x + ([1, 2, 2][i // 4] if allow_non_zero_zero_points else 0) for (i, x) in enumerate([
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2
])],
)
per_tensor_large = (
torch.quantize_per_tensor(
wide_weight_fp32,
scales[0],
zero_points[0],
dtype,
),
True,
[0, 2, 3, 3],
[0, 1001, 0],
[x + (1 if allow_non_zero_zero_points else 0) for x in [
2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0
]],
)
for (weight, is_per_tensor_quantized, expected_row_block_indices, expected_col_block_indices, expected_weights) in [
per_tensor_small, per_channel_small, per_tensor_large
]:
lin = Linear(
out_features=weight.shape[0],
in_features=weight.shape[1],
row_block_size=row_block_size,
col_block_size=col_block_size,
bias=True,
dtype=dtype,
)
bias = torch.ones(size=(weight.shape[0],))
lin.set_weight_bias(weight, bias, row_block_size, col_block_size)
serialized = lin._packed_params._packed_params.__getstate__()
(
_, # version
bias_,
out_features_block_size_,
in_features_block_size_,
weight_scales_,
weight_zero_points_,
quantization_scheme_,
row_block_indices_,
col_block_indices_,
weights_,
output_channels_,
input_channels_
) = serialized[0]
# Test Serialization
self.assertEqual(bias_, bias)
self.assertEqual(out_features_block_size_, row_block_size)
self.assertEqual(in_features_block_size_, col_block_size)
self.assertEqual(weight_scales_, [scales[0]] if is_per_tensor_quantized else scales)
self.assertEqual(weight_zero_points_, [zero_points[0]] if is_per_tensor_quantized else zero_points)
self.assertEqual(quantization_scheme_, is_per_tensor_quantized)
self.assertEqual(row_block_indices_, expected_row_block_indices)
self.assertEqual(col_block_indices_, expected_col_block_indices)
self.assertEqual(weights_.tolist(), [v + 128 for v in expected_weights]) # weights are serialized as +128
self.assertEqual(output_channels_, weight.shape[0])
self.assertEqual(input_channels_, weight.shape[1])
# Test Unpacking
(weights_, bias_, out_features_block_size_, in_features_block_size_) = lin._weight_bias()
self.assertEqual(torch.dequantize(weights_), torch.dequantize(weight))
self.assertEqual(bias_, bias)
self.assertEqual(out_features_block_size_, row_block_size)
self.assertEqual(in_features_block_size_, col_block_size)
# Test Deserialization
with tempfile.TemporaryFile() as file_buff:
torch.save(lin, file_buff)
file_buff.seek(0)
lin2 = torch.load(file_buff)
self.assertEqual(lin._weight_bias(), lin2._weight_bias())
# Serialize -> Deserialize -> Serialize should match Serialize
self.assertEqual(serialized, lin2._packed_params._packed_params.__getstate__())
# Test that op output is preserved by serialize -> deserialize
if qengine_is_qnnpack():
x = torch.rand(size=(1, weight.shape[1]))
y1 = lin(x)
y2 = lin2(x)
self.assertEqual(y1, y2)
def test_qlinear_packed_params_qnnpack(self):
torch.manual_seed(0)
with override_quantized_engine('qnnpack'):
with override_cpu_allocator_for_qnnpack(qengine_is_qnnpack()):
self.test_qlinear_packed_params(allow_non_zero_zero_points=True)
|