1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
# -*- coding: utf-8 -*-
# Owner(s): ["module: unknown"]
import itertools
import logging
import re
import torch
from torch import nn
from torch.ao.sparsity import BaseSparsifier, WeightNormSparsifier, FakeSparsity, NearlyDiagonalSparsifier
from torch.nn.utils.parametrize import is_parametrized
from torch.testing._internal.common_utils import TestCase
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
class Model(nn.Module):
def __init__(self):
super().__init__()
self.seq = nn.Sequential(
nn.Linear(16, 16)
)
self.linear = nn.Linear(16, 16)
self.head = nn.Linear(16, 4)
def forward(self, x):
x = self.seq(x)
x = self.linear(x)
x = self.head(x)
return x
class ImplementedSparsifier(BaseSparsifier):
def __init__(self, **kwargs):
super().__init__(defaults=kwargs)
def update_mask(self, module, **kwargs):
module.parametrizations.weight[0].mask[0] = 0
linear_state = self.state['linear.weight']
linear_state['step_count'] = linear_state.get('step_count', 0) + 1
class TestBaseSparsifier(TestCase):
def test_constructor(self):
# Cannot instantiate the abstract base
self.assertRaises(TypeError, BaseSparsifier)
# Can instantiate the model with no configs
model = Model()
sparsifier = ImplementedSparsifier(test=3)
sparsifier.prepare(model, config=None)
assert len(sparsifier.groups) == 3
sparsifier.step()
# Can instantiate the model with configs
sparsifier = ImplementedSparsifier(test=3)
sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}])
assert len(sparsifier.groups) == 1
assert sparsifier.groups[0]['tensor_fqn'] == 'linear.weight'
assert 'test' in sparsifier.groups[0]
assert sparsifier.groups[0]['test'] == 3
def test_prepare_config(self):
model = Model()
sparsifier = ImplementedSparsifier(test=3)
# Make sure there are no parametrizations before `prepare`
assert not hasattr(model.seq[0], 'parametrizations')
assert not hasattr(model.linear, 'parametrizations')
assert not hasattr(model.head, 'parametrizations')
sparsifier.prepare(model, config=[
{'tensor_fqn': 'seq.0.weight', 'test': 42},
# No 'linear' to make sure it will be skipped in the sparsification
{'tensor_fqn': 'head.weight'}
])
assert len(sparsifier.groups) == 2
# Check if default argument is not assigned if explicit
assert sparsifier.groups[0]['tensor_fqn'] == 'seq.0.weight'
assert sparsifier.groups[0]['test'] == 42
# Check if FQN and module are pointing to the same location
assert sparsifier.groups[1]['tensor_fqn'] == 'head.weight'
assert sparsifier.groups[1]['module'] == model.head
# Check if parameterizations are attached
assert hasattr(model.seq[0], 'parametrizations')
assert not hasattr(model.linear, 'parametrizations')
assert hasattr(model.head, 'parametrizations')
def test_step(self):
model = Model()
sparsifier = ImplementedSparsifier(test=3)
sparsifier.enable_mask_update = True
sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}])
sparsifier.step()
assert torch.all(model.linear.parametrizations.weight[0].mask[0] == 0)
def test_state_dict(self):
step_count = 3
model0 = Model()
sparsifier0 = ImplementedSparsifier(test=3)
sparsifier0.prepare(model0, [{'tensor_fqn': 'linear.weight'}])
mask = model0.linear.parametrizations['weight'][0].mask
mask.data = torch.arange(mask.shape[0] * mask.shape[1]).reshape(mask.shape)
for step in range(step_count):
sparsifier0.step()
state_dict = sparsifier0.state_dict()
# Check the expected keys in the state_dict
assert 'state' in state_dict
assert 'step_count' in state_dict['state']['linear.weight']
assert state_dict['state']['linear.weight']['step_count'] == 3
assert 'groups' in state_dict
assert 'test' in state_dict['groups'][0]
assert 'tensor_fqn' in state_dict['groups'][0]
assert state_dict['groups'][0]['tensor_fqn'] == 'linear.weight'
# Check loading static_dict creates an equivalent model
model1 = Model()
sparsifier1 = ImplementedSparsifier()
sparsifier1.prepare(model1, None)
assert sparsifier0.state != sparsifier1.state
# Make sure the masks are different in the beginning
for mg in sparsifier0.groups:
if mg['tensor_fqn'] == 'linear.weight':
mask0 = mg['module'].parametrizations.weight[0].mask
for mg in sparsifier1.groups:
if mg['tensor_fqn'] == 'linear.weight':
mask1 = mg['module'].parametrizations.weight[0].mask
self.assertNotEqual(mask0, mask1)
sparsifier1.load_state_dict(state_dict)
# Make sure the states are loaded, and are correct
assert sparsifier0.state == sparsifier1.state
# Make sure the masks (and all dicts) are the same after loading
assert len(sparsifier0.groups) == len(sparsifier1.groups)
for idx in range(len(sparsifier0.groups)):
mg0 = sparsifier0.groups[idx]
mg1 = sparsifier1.groups[idx]
for key in mg0.keys():
assert key in mg1
if key == 'module':
# We cannot compare modules as they are different
param0 = mg0[key].parametrizations.weight[0]
param1 = mg1[key].parametrizations.weight[0]
assert hasattr(param0, 'mask')
assert hasattr(param1, 'mask')
self.assertEqual(param0.__dict__, param1.__dict__)
else:
assert mg0[key] == mg1[key]
def test_mask_squash(self):
model = Model()
sparsifier = ImplementedSparsifier(test=3)
sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}])
assert hasattr(model.linear.parametrizations.weight[0], 'mask')
assert is_parametrized(model.linear, 'weight')
assert not is_parametrized(model.seq[0], 'weight')
sparsifier.squash_mask()
assert not is_parametrized(model.seq[0], 'weight')
assert not is_parametrized(model.linear, 'weight')
def test_mask_squash_with_params1(self):
model = Model()
sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1)
sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}])
sparsifier.squash_mask(
params_to_keep_per_layer={
'linear': ('foo', 'bar'),
'seq.0': ('baz',)
})
assert not is_parametrized(model.seq[0], 'weight')
assert not is_parametrized(model.linear, 'weight')
assert hasattr(model.seq[0], 'sparse_params')
assert hasattr(model.linear, 'sparse_params')
assert model.seq[0].sparse_params.get('foo', None) is None
assert model.seq[0].sparse_params.get('bar', None) is None
assert model.seq[0].sparse_params.get('baz', None) == 1
assert model.linear.sparse_params.get('foo', None) == 3
assert model.linear.sparse_params.get('bar', None) == 2
assert model.linear.sparse_params.get('baz', None) is None
def test_mask_squash_with_params2(self):
model = Model()
sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1)
sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}])
sparsifier.squash_mask(params_to_keep=('foo', 'bar'))
assert not is_parametrized(model.seq[0], 'weight')
assert not is_parametrized(model.linear, 'weight')
assert hasattr(model.seq[0], 'sparse_params')
assert hasattr(model.linear, 'sparse_params')
assert model.seq[0].sparse_params.get('foo', None) == 3
assert model.seq[0].sparse_params.get('bar', None) == 2
assert model.seq[0].sparse_params.get('baz', None) is None
assert model.linear.sparse_params.get('foo', None) == 3
assert model.linear.sparse_params.get('bar', None) == 2
assert model.linear.sparse_params.get('baz', None) is None
def test_mask_squash_with_params3(self):
model = Model()
sparsifier = ImplementedSparsifier(foo=3, bar=2, baz=1)
sparsifier.prepare(model, [{'tensor_fqn': 'linear.weight'}, {'tensor_fqn': 'seq.0.weight'}])
sparsifier.squash_mask(
params_to_keep=('foo', 'bar'),
params_to_keep_per_layer={'seq.0': ('baz',)})
assert not is_parametrized(model.seq[0], 'weight')
assert not is_parametrized(model.linear, 'weight')
assert hasattr(model.seq[0], 'sparse_params')
assert hasattr(model.linear, 'sparse_params')
assert model.seq[0].sparse_params.get('foo', None) == 3
assert model.seq[0].sparse_params.get('bar', None) == 2
assert model.seq[0].sparse_params.get('baz', None) == 1
assert model.linear.sparse_params.get('foo', None) == 3
assert model.linear.sparse_params.get('bar', None) == 2
assert model.linear.sparse_params.get('baz', None) is None
class TestWeightNormSparsifier(TestCase):
def test_constructor(self):
model = Model()
sparsifier = WeightNormSparsifier()
sparsifier.prepare(model, config=None)
for g in sparsifier.groups:
assert isinstance(g['module'], nn.Linear)
# The groups are unordered
assert g['module_fqn'] in ('seq.0', 'linear', 'head')
def test_step(self):
model = Model()
sparsifier = WeightNormSparsifier(sparsity_level=0.5)
sparsifier.prepare(model, config=[{'tensor_fqn': 'linear.weight'}])
for g in sparsifier.groups:
# Before step
module = g['module']
assert (1.0 - module.parametrizations['weight'][0].mask.mean()) == 0 # checking sparsity level is 0
sparsifier.enable_mask_update = True
sparsifier.step()
self.assertAlmostEqual(model.linear.parametrizations['weight'][0].mask.mean().item(), 0.5, places=2)
for g in sparsifier.groups:
# After step
module = g['module']
assert (1.0 - module.parametrizations['weight'][0].mask.mean()) > 0 # checking sparsity level has increased
# Test if the mask collapses to all zeros if the weights are randomized
iters_before_collapse = 1000
for _ in range(iters_before_collapse):
model.linear.weight.data = torch.randn(model.linear.weight.shape)
sparsifier.step()
for g in sparsifier.groups:
# After step
module = g['module']
assert (1.0 - module.parametrizations['weight'][0].mask.mean()) > 0 # checking sparsity level did not collapse
def test_step_2_of_4(self):
model = Model()
sparsifier = WeightNormSparsifier(sparsity_level=1.0,
sparse_block_shape=(1, 4),
zeros_per_block=2)
sparsifier.prepare(model, config=[{'tensor_fqn': 'linear.weight'}])
sparsifier.step()
# make sure the sparsity level is approximately 50%
mask = model.linear.parametrizations['weight'][0].mask.to(torch.float) # mean works on float only
self.assertAlmostEqual(mask.mean().item(), 0.5, places=2)
# Make sure each block has exactly 50% zeros
module = sparsifier.groups[0]['module']
mask = module.parametrizations['weight'][0].mask
for row in mask:
for idx in range(0, len(row), 4):
block = row[idx:idx + 4]
block, _ = block.sort()
assert (block[:2] == 0).all()
assert (block[2:] != 0).all()
def test_prepare(self):
model = Model()
sparsifier = WeightNormSparsifier()
sparsifier.prepare(model, config=None)
for g in sparsifier.groups:
module = g['module']
# Check mask exists
assert hasattr(module.parametrizations['weight'][0], 'mask')
# Check parametrization exists and is correct
assert is_parametrized(module, 'weight')
assert type(module.parametrizations.weight[0]) == FakeSparsity
def test_mask_squash(self):
model = Model()
sparsifier = WeightNormSparsifier()
sparsifier.prepare(model, config=None)
sparsifier.squash_mask()
for g in sparsifier.groups:
module = g['module']
assert not is_parametrized(module, 'weight')
assert not hasattr(module, 'mask')
def test_sparsity_levels(self):
sparsity_levels = [-1.0, 0.0, 0.5, 1.0, 2.0]
sparse_block_shapes = [(1, 1), (1, 4), (2, 2), (4, 1)]
zeros_per_blocks = [0, 1, 2, 3, 4]
testcases = itertools.tee(itertools.product(sparsity_levels,
sparse_block_shapes,
zeros_per_blocks))
# Create a config and model with all the testcases
model = nn.Sequential()
sparsifier = WeightNormSparsifier()
sparsity_per_layer_config = []
p = re.compile(r'[-\.\s]')
for sl, sbs, zpb in testcases[0]:
# Make sure the number of zeros is not > values in a block
if zpb > sbs[0] * sbs[1]:
continue
layer_name = f'{sl}_{sbs}_{zpb}'
layer_name = p.sub('_', layer_name)
layer = nn.Linear(12, 12, bias=False)
layer.weight = nn.Parameter(torch.ones(12, 12))
model.add_module(layer_name, layer)
config = {
'tensor_fqn': layer_name + ".weight",
'sparsity_level': sl,
'sparse_block_shape': sbs,
'zeros_per_block': zpb
}
sparsity_per_layer_config.append(config)
sparsifier.prepare(model, sparsity_per_layer_config)
sparsifier.step()
sparsifier.squash_mask()
model.eval()
for sl, sbs, zpb in testcases[1]:
if zpb > sbs[0] * sbs[1]:
continue
layer_name = f'{sl}_{sbs}_{zpb}'
layer_name = p.sub('_', layer_name)
layer = getattr(model, layer_name)
# Level of sparsity is achieved
sparse_mask = (layer.weight == 0).float()
if zpb == 0:
assert sparse_mask.mean() == 0
else:
# Ratio of individual zeros in the tensor
true_sl = min(max(sl, 0.0), 1.0)
true_sl = true_sl * zpb / sbs[0] / sbs[1]
assert sparse_mask.mean() == true_sl
class TestNearlyDiagonalSparsifier(TestCase):
def test_constructor(self):
model = Model()
sparsifier = NearlyDiagonalSparsifier(nearliness=1)
sparsifier.prepare(model, config=None)
for g in sparsifier.groups:
assert isinstance(g['module'], nn.Linear)
# The groups are unordered
assert g['module_fqn'] in ('seq.0', 'linear', 'head')
def test_step(self):
model = Model()
sparsifier = NearlyDiagonalSparsifier(nearliness=1)
sparsifier.prepare(model, config=[{'tensor_fqn': 'linear.weight'}])
for g in sparsifier.groups:
# Before step
module = g['module']
assert (1.0 - module.parametrizations['weight'][0].mask.mean()) == 0 # checking sparsity level is 0
sparsifier.enable_mask_update = True
sparsifier.step()
mask = module.parametrizations['weight'][0].mask
height, width = mask.shape
assert torch.all(mask == torch.eye(height, width))
for g in sparsifier.groups:
# After step
module = g['module']
assert (1.0 - module.parametrizations['weight'][0].mask.mean()) > 0 # checking sparsity level has increased
# Test if the mask collapses to all zeros if the weights are randomized
iters_before_collapse = 1000
for _ in range(iters_before_collapse):
model.linear.weight.data = torch.randn(model.linear.weight.shape)
sparsifier.step()
for g in sparsifier.groups:
# After step
module = g['module']
assert (1.0 - module.parametrizations['weight'][0].mask.mean()) > 0 # checking sparsity level did not collapse
def test_prepare(self):
model = Model()
sparsifier = NearlyDiagonalSparsifier(nearliness=1)
sparsifier.prepare(model, config=None)
for g in sparsifier.groups:
module = g['module']
# Check mask exists
assert hasattr(module.parametrizations['weight'][0], 'mask')
# Check parametrization exists and is correct
assert is_parametrized(module, 'weight')
assert type(module.parametrizations.weight[0]) == FakeSparsity
def test_mask_squash(self):
model = Model()
sparsifier = NearlyDiagonalSparsifier(nearliness=1)
sparsifier.prepare(model, config=None)
sparsifier.step()
sparsifier.squash_mask()
for g in sparsifier.groups:
module = g['module']
assert not is_parametrized(module, 'weight')
assert not hasattr(module, 'mask')
weights = module.weight
height, width = weights.shape
assert torch.all(weights == torch.eye(height, width) * weights) # only diagonal to be present
def test_sparsity_levels(self):
nearliness_levels = list(nearliness for nearliness in range(-1, 100))
model = nn.Sequential()
p = re.compile(r'[-\.\s]')
for nearliness in nearliness_levels:
sparsifier = NearlyDiagonalSparsifier(nearliness=1)
layer_name = f'{nearliness}'
layer_name = p.sub('_', layer_name)
layer = nn.Linear(32, 32, bias=False)
layer.weight = nn.Parameter(torch.ones(32, 32))
width, height = layer.weight.shape
model.add_module(layer_name, layer)
config = {
'tensor_fqn': layer_name + ".weight",
'nearliness': nearliness
}
sparsifier.prepare(model, [config])
# should raise a ValueError when nearliness arg is illegal
if (nearliness > 0 and nearliness % 2 == 0) or (nearliness // 2 >= min(width, height)):
with self.assertRaises(ValueError):
sparsifier.step()
else:
sparsifier.step()
sparsifier.squash_mask()
model.eval()
layer = getattr(model, layer_name)
# verify that mask created corresponds to the nearliness
self._verify_nearliness(layer.weight, nearliness)
# helper function to verify nearliness of a mask
def _verify_nearliness(self, mask: torch.Tensor, nearliness: int):
if nearliness <= 0:
assert torch.all(mask == torch.zeros(mask.shape[0], mask.shape[1]))
else:
height, width = mask.shape
dist_to_diagonal = nearliness // 2
for row in range(0, height):
for col in range(0, width):
if abs(row - col) <= dist_to_diagonal:
assert mask[row, col] == 1
else:
assert mask[row, col] == 0
|