1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
# Owner(s): ["module: unknown"]
import collections
import json
import os
import re
import textwrap
import timeit
from typing import Any, List, Tuple
import unittest
import torch
import torch.utils.benchmark as benchmark_utils
from torch.testing._internal.common_utils import TestCase, run_tests, IS_SANDCASTLE, IS_WINDOWS, slowTest
import expecttest
import numpy as np
CALLGRIND_ARTIFACTS: str = os.path.join(
os.path.split(os.path.abspath(__file__))[0],
"callgrind_artifacts.json"
)
def generate_callgrind_artifacts() -> None:
"""Regenerate `callgrind_artifacts.json`
Unlike the expect tests, regenerating callgrind counts will produce a
large diff since build directories and conda/pip directories are included
in the instruction string. It is also not 100% deterministic (due to jitter
from Python) and takes over a minute to run. As a result, running this
function is manual.
"""
print("Regenerating callgrind artifact.")
stats_no_data = benchmark_utils.Timer(
"y = torch.ones(())"
).collect_callgrind(number=1000)
stats_with_data = benchmark_utils.Timer(
"y = torch.ones((1,))"
).collect_callgrind(number=1000)
user = os.getenv("USER")
def to_entry(fn_counts):
return [f"{c} {fn.replace(f'/{user}/', '/test_user/')}" for c, fn in fn_counts]
artifacts = {
"baseline_inclusive": to_entry(stats_no_data.baseline_inclusive_stats),
"baseline_exclusive": to_entry(stats_no_data.baseline_exclusive_stats),
"ones_no_data_inclusive": to_entry(stats_no_data.stmt_inclusive_stats),
"ones_no_data_exclusive": to_entry(stats_no_data.stmt_exclusive_stats),
"ones_with_data_inclusive": to_entry(stats_with_data.stmt_inclusive_stats),
"ones_with_data_exclusive": to_entry(stats_with_data.stmt_exclusive_stats),
}
with open(CALLGRIND_ARTIFACTS, "wt") as f:
json.dump(artifacts, f, indent=4)
def load_callgrind_artifacts() -> Tuple[benchmark_utils.CallgrindStats, benchmark_utils.CallgrindStats]:
"""Hermetic artifact to unit test Callgrind wrapper.
In addition to collecting counts, this wrapper provides some facilities for
manipulating and displaying the collected counts. The results of several
measurements are stored in callgrind_artifacts.json.
While FunctionCounts and CallgrindStats are pickleable, the artifacts for
testing are stored in raw string form for easier inspection and to avoid
baking any implementation details into the artifact itself.
"""
with open(CALLGRIND_ARTIFACTS, "rt") as f:
artifacts = json.load(f)
pattern = re.compile(r"^\s*([0-9]+)\s(.+)$")
def to_function_counts(
count_strings: List[str],
inclusive: bool
) -> benchmark_utils.FunctionCounts:
data: List[benchmark_utils.FunctionCount] = []
for cs in count_strings:
# Storing entries as f"{c} {fn}" rather than [c, fn] adds some work
# reviving the artifact, but it makes the json much easier to read.
match = pattern.search(cs)
assert match is not None
c, fn = match.groups()
data.append(benchmark_utils.FunctionCount(count=int(c), function=fn))
return benchmark_utils.FunctionCounts(
tuple(sorted(data, reverse=True)),
inclusive=inclusive)
baseline_inclusive = to_function_counts(artifacts["baseline_inclusive"], True)
baseline_exclusive = to_function_counts(artifacts["baseline_exclusive"], False)
stats_no_data = benchmark_utils.CallgrindStats(
benchmark_utils.TaskSpec("y = torch.ones(())", "pass"),
number_per_run=1000,
built_with_debug_symbols=True,
baseline_inclusive_stats=baseline_inclusive,
baseline_exclusive_stats=baseline_exclusive,
stmt_inclusive_stats=to_function_counts(artifacts["ones_no_data_inclusive"], True),
stmt_exclusive_stats=to_function_counts(artifacts["ones_no_data_exclusive"], False),
stmt_callgrind_out=None,
)
stats_with_data = benchmark_utils.CallgrindStats(
benchmark_utils.TaskSpec("y = torch.ones((1,))", "pass"),
number_per_run=1000,
built_with_debug_symbols=True,
baseline_inclusive_stats=baseline_inclusive,
baseline_exclusive_stats=baseline_exclusive,
stmt_inclusive_stats=to_function_counts(artifacts["ones_with_data_inclusive"], True),
stmt_exclusive_stats=to_function_counts(artifacts["ones_with_data_exclusive"], False),
stmt_callgrind_out=None,
)
return stats_no_data, stats_with_data
class MyModule(torch.nn.Module):
def forward(self, x):
return x + 1
class TestBenchmarkUtils(TestCase):
def regularizeAndAssertExpectedInline(
self, x: Any,
expect: str,
indent: int = 12
) -> None:
x_str: str = re.sub(
"object at 0x[0-9a-fA-F]+>",
"object at 0xXXXXXXXXXXXX>",
x if isinstance(x, str) else repr(x)
)
if "\n" in x_str:
# Indent makes the reference align at the call site.
x_str = textwrap.indent(x_str, " " * indent)
self.assertExpectedInline(x_str, expect, skip=1)
def test_timer(self):
timer = benchmark_utils.Timer(
stmt="torch.ones(())",
)
sample = timer.timeit(5).median
self.assertIsInstance(sample, float)
median = timer.blocked_autorange(min_run_time=0.01).median
self.assertIsInstance(median, float)
# We set a very high threshold to avoid flakiness in CI.
# The internal algorithm is tested in `test_adaptive_timer`
median = timer.adaptive_autorange(threshold=0.5).median
# Test that multi-line statements work properly.
median = benchmark_utils.Timer(
stmt="""
with torch.no_grad():
y = x + 1""",
setup="""
x = torch.ones((1,), requires_grad=True)
for _ in range(5):
x = x + 1.0""",
).timeit(5).median
self.assertIsInstance(sample, float)
@slowTest
@unittest.skipIf(IS_SANDCASTLE, "C++ timing is OSS only.")
@unittest.skipIf(True, "Failing on clang, see 74398")
def test_timer_tiny_fast_snippet(self):
timer = benchmark_utils.Timer(
'auto x = 1;(void)x;',
timer=timeit.default_timer,
language=benchmark_utils.Language.CPP,
)
median = timer.blocked_autorange().median
self.assertIsInstance(median, float)
@slowTest
@unittest.skipIf(IS_SANDCASTLE, "C++ timing is OSS only.")
@unittest.skipIf(True, "Failing on clang, see 74398")
def test_cpp_timer(self):
timer = benchmark_utils.Timer(
"""
#ifndef TIMER_GLOBAL_CHECK
static_assert(false);
#endif
torch::Tensor y = x + 1;
""",
setup="torch::Tensor x = torch::empty({1});",
global_setup="#define TIMER_GLOBAL_CHECK",
timer=timeit.default_timer,
language=benchmark_utils.Language.CPP,
)
t = timer.timeit(10)
self.assertIsInstance(t.median, float)
class _MockTimer:
_seed = 0
_timer_noise_level = 0.05
_timer_cost = 100e-9 # 100 ns
_function_noise_level = 0.05
_function_costs = (
("pass", 8e-9),
("cheap_fn()", 4e-6),
("expensive_fn()", 20e-6),
("with torch.no_grad():\n y = x + 1", 10e-6),
)
def __init__(self, stmt, setup, timer, globals):
self._random_state = np.random.RandomState(seed=self._seed)
self._mean_cost = {k: v for k, v in self._function_costs}[stmt]
def sample(self, mean, noise_level):
return max(self._random_state.normal(mean, mean * noise_level), 5e-9)
def timeit(self, number):
return sum([
# First timer invocation
self.sample(self._timer_cost, self._timer_noise_level),
# Stmt body
self.sample(self._mean_cost * number, self._function_noise_level),
# Second timer invocation
self.sample(self._timer_cost, self._timer_noise_level),
])
def test_adaptive_timer(self):
class MockTimer(benchmark_utils.Timer):
_timer_cls = self._MockTimer
class _MockCudaTimer(self._MockTimer):
# torch.cuda.synchronize is much more expensive than
# just timeit.default_timer
_timer_cost = 10e-6
_function_costs = (
self._MockTimer._function_costs[0],
self._MockTimer._function_costs[1],
# GPU should be faster once there is enough work.
("expensive_fn()", 5e-6),
)
class MockCudaTimer(benchmark_utils.Timer):
_timer_cls = _MockCudaTimer
m = MockTimer("pass").blocked_autorange(min_run_time=10)
self.regularizeAndAssertExpectedInline(
m,
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
pass
Median: 7.98 ns
IQR: 0.52 ns (7.74 to 8.26)
125 measurements, 10000000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockTimer("pass").adaptive_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
pass
Median: 7.86 ns
IQR: 0.71 ns (7.63 to 8.34)
6 measurements, 1000000 runs per measurement, 1 thread"""
)
# Check against strings so we can reuse expect infra.
self.regularizeAndAssertExpectedInline(m.mean, """8.0013658357956e-09""")
self.regularizeAndAssertExpectedInline(m.median, """7.983151323215967e-09""")
self.regularizeAndAssertExpectedInline(len(m.times), """125""")
self.regularizeAndAssertExpectedInline(m.number_per_run, """10000000""")
self.regularizeAndAssertExpectedInline(
MockTimer("cheap_fn()").blocked_autorange(min_run_time=10),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
cheap_fn()
Median: 3.98 us
IQR: 0.27 us (3.85 to 4.12)
252 measurements, 10000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockTimer("cheap_fn()").adaptive_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
cheap_fn()
Median: 4.16 us
IQR: 0.22 us (4.04 to 4.26)
4 measurements, 1000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockTimer("expensive_fn()").blocked_autorange(min_run_time=10),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
expensive_fn()
Median: 19.97 us
IQR: 1.35 us (19.31 to 20.65)
501 measurements, 1000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockTimer("expensive_fn()").adaptive_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
expensive_fn()
Median: 20.79 us
IQR: 1.09 us (20.20 to 21.29)
4 measurements, 1000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockCudaTimer("pass").blocked_autorange(min_run_time=10),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
pass
Median: 7.92 ns
IQR: 0.43 ns (7.75 to 8.17)
13 measurements, 100000000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockCudaTimer("pass").adaptive_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
pass
Median: 7.75 ns
IQR: 0.57 ns (7.56 to 8.13)
4 measurements, 10000000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockCudaTimer("cheap_fn()").blocked_autorange(min_run_time=10),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
cheap_fn()
Median: 4.04 us
IQR: 0.30 us (3.90 to 4.19)
25 measurements, 100000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockCudaTimer("cheap_fn()").adaptive_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
cheap_fn()
Median: 4.09 us
IQR: 0.38 us (3.90 to 4.28)
4 measurements, 100000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockCudaTimer("expensive_fn()").blocked_autorange(min_run_time=10),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
expensive_fn()
Median: 4.98 us
IQR: 0.31 us (4.83 to 5.13)
20 measurements, 100000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockCudaTimer("expensive_fn()").adaptive_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
expensive_fn()
Median: 5.01 us
IQR: 0.28 us (4.87 to 5.15)
4 measurements, 10000 runs per measurement, 1 thread"""
)
# Make sure __repr__ is reasonable for
# multi-line / label / sub_label / description, but we don't need to
# check numerics.
multi_line_stmt = """
with torch.no_grad():
y = x + 1
"""
self.regularizeAndAssertExpectedInline(
MockTimer(multi_line_stmt).blocked_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
stmt:
with torch.no_grad():
y = x + 1
Median: 10.06 us
IQR: 0.54 us (9.73 to 10.27)
20 measurements, 1000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockTimer(multi_line_stmt, sub_label="scalar_add").blocked_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
stmt: (scalar_add)
with torch.no_grad():
y = x + 1
Median: 10.06 us
IQR: 0.54 us (9.73 to 10.27)
20 measurements, 1000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockTimer(
multi_line_stmt,
label="x + 1 (no grad)",
sub_label="scalar_add",
).blocked_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
x + 1 (no grad): scalar_add
Median: 10.06 us
IQR: 0.54 us (9.73 to 10.27)
20 measurements, 1000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockTimer(
multi_line_stmt,
setup="setup_fn()",
sub_label="scalar_add",
).blocked_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
stmt: (scalar_add)
with torch.no_grad():
y = x + 1
setup: setup_fn()
Median: 10.06 us
IQR: 0.54 us (9.73 to 10.27)
20 measurements, 1000 runs per measurement, 1 thread"""
)
self.regularizeAndAssertExpectedInline(
MockTimer(
multi_line_stmt,
setup="""
x = torch.ones((1,), requires_grad=True)
for _ in range(5):
x = x + 1.0""",
sub_label="scalar_add",
description="Multi-threaded scalar math!",
num_threads=16,
).blocked_autorange(),
"""\
<torch.utils.benchmark.utils.common.Measurement object at 0xXXXXXXXXXXXX>
stmt: (scalar_add)
with torch.no_grad():
y = x + 1
Multi-threaded scalar math!
setup:
x = torch.ones((1,), requires_grad=True)
for _ in range(5):
x = x + 1.0
Median: 10.06 us
IQR: 0.54 us (9.73 to 10.27)
20 measurements, 1000 runs per measurement, 16 threads"""
)
@slowTest
@unittest.skipIf(IS_WINDOWS, "Valgrind is not supported on Windows.")
@unittest.skipIf(IS_SANDCASTLE, "Valgrind is OSS only.")
def test_collect_callgrind(self):
with self.assertRaisesRegex(
ValueError,
r"`collect_callgrind` requires that globals be wrapped "
r"in `CopyIfCallgrind` so that serialization is explicit."
):
benchmark_utils.Timer(
"pass",
globals={"x": 1}
).collect_callgrind(collect_baseline=False)
with self.assertRaisesRegex(
# Subprocess raises AttributeError (from pickle),
# _ValgrindWrapper re-raises as generic OSError.
OSError, "AttributeError: Can't get attribute 'MyModule'"
):
benchmark_utils.Timer(
"model(1)",
globals={"model": benchmark_utils.CopyIfCallgrind(MyModule())}
).collect_callgrind(collect_baseline=False)
@torch.jit.script
def add_one(x):
return x + 1
timer = benchmark_utils.Timer(
"y = add_one(x) + k",
setup="x = torch.ones((1,))",
globals={
"add_one": benchmark_utils.CopyIfCallgrind(add_one),
"k": benchmark_utils.CopyIfCallgrind(5),
"model": benchmark_utils.CopyIfCallgrind(
MyModule(),
setup=f"""\
import sys
sys.path.append({repr(os.path.split(os.path.abspath(__file__))[0])})
from test_benchmark_utils import MyModule
"""
)
}
)
stats = timer.collect_callgrind(number=1000)
counts = stats.counts(denoise=False)
self.assertIsInstance(counts, int)
self.assertGreater(counts, 0)
# There is some jitter with the allocator, so we use a simpler task to
# test reproducibility.
timer = benchmark_utils.Timer(
"x += 1",
setup="x = torch.ones((1,))",
)
stats = timer.collect_callgrind(number=1000, repeats=20)
assert isinstance(stats, tuple)
# Check that the repeats are at least somewhat repeatable. (within 10 instructions per iter)
counts = collections.Counter([s.counts(denoise=True) // 10_000 * 10_000 for s in stats])
self.assertGreater(max(counts.values()), 1, f"Every instruction count total was unique: {counts}")
from torch.utils.benchmark.utils.valgrind_wrapper.timer_interface import wrapper_singleton
self.assertIsNone(
wrapper_singleton()._bindings_module,
"JIT'd bindings are only for back testing."
)
@slowTest
@unittest.skipIf(IS_WINDOWS, "Valgrind is not supported on Windows.")
@unittest.skipIf(IS_SANDCASTLE, "Valgrind is OSS only.")
@unittest.skipIf(True, "Failing on clang, see 74398")
def test_collect_cpp_callgrind(self):
timer = benchmark_utils.Timer(
"x += 1;",
setup="torch::Tensor x = torch::ones({1});",
timer=timeit.default_timer,
language="c++",
)
stats = [
timer.collect_callgrind()
for _ in range(3)
]
counts = [s.counts() for s in stats]
self.assertGreater(
min(counts), 0, "No stats were collected")
self.assertEqual(
min(counts), max(counts), "C++ Callgrind should be deterministic")
for s in stats:
self.assertEqual(
s.counts(denoise=True), s.counts(denoise=False),
"De-noising should not apply to C++.")
stats = timer.collect_callgrind(number=1000, repeats=20)
assert isinstance(stats, tuple)
# NB: Unlike the example above, there is no expectation that all
# repeats will be identical.
counts = collections.Counter([s.counts(denoise=True) // 10_000 * 10_000 for s in stats])
self.assertGreater(max(counts.values()), 1, repr(counts))
def test_manipulate_callgrind_stats(self):
stats_no_data, stats_with_data = load_callgrind_artifacts()
# Mock `torch.set_printoptions(linewidth=160)`
wide_linewidth = benchmark_utils.FunctionCounts(
stats_no_data.stats(inclusive=False)._data, False, _linewidth=160)
for l in repr(wide_linewidth).splitlines(keepends=False):
self.assertLessEqual(len(l), 160)
self.assertEqual(
# `delta` is just a convenience method.
stats_with_data.delta(stats_no_data)._data,
(stats_with_data.stats() - stats_no_data.stats())._data
)
deltas = stats_with_data.as_standardized().delta(stats_no_data.as_standardized())
def custom_transforms(fn: str):
fn = re.sub(re.escape("/usr/include/c++/8/bits/"), "", fn)
fn = re.sub(r"build/../", "", fn)
fn = re.sub(".+" + re.escape("libsupc++"), "libsupc++", fn)
return fn
self.regularizeAndAssertExpectedInline(
stats_no_data,
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0xXXXXXXXXXXXX>
y = torch.ones(())
All Noisy symbols removed
Instructions: 8869966 8728096
Baseline: 6682 5766
1000 runs per measurement, 1 thread""",
)
self.regularizeAndAssertExpectedInline(
stats_no_data.counts(),
"""8869966""",
)
self.regularizeAndAssertExpectedInline(
stats_no_data.counts(denoise=True),
"""8728096""",
)
self.regularizeAndAssertExpectedInline(
stats_no_data.stats(),
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
408000 ???:__tls_get_addr [/usr/lib64/ld-2.28.so]
388193 ???:_int_free [/usr/lib64/libc-2.28.so]
274000 build/../torch/csrc/utils/python ... rch/torch/lib/libtorch_python.so]
264000 build/../aten/src/ATen/record_fu ... ytorch/torch/lib/libtorch_cpu.so]
192000 build/../c10/core/Device.h:c10:: ... epos/pytorch/torch/lib/libc10.so]
169855 ???:_int_malloc [/usr/lib64/libc-2.28.so]
154000 build/../c10/core/TensorOptions. ... ytorch/torch/lib/libtorch_cpu.so]
148561 /tmp/build/80754af9/python_15996 ... da3/envs/throwaway/bin/python3.6]
135000 ???:malloc [/usr/lib64/libc-2.28.so]
...
2000 /usr/include/c++/8/ext/new_allocator.h:torch::PythonArgs::intlist(int)
2000 /usr/include/c++/8/bits/stl_vect ... *, _object*, _object*, _object**)
2000 /usr/include/c++/8/bits/stl_vect ... rningHandler::~PyWarningHandler()
2000 /usr/include/c++/8/bits/stl_vect ... ject*, _object*, _object**, bool)
2000 /usr/include/c++/8/bits/stl_algobase.h:torch::PythonArgs::intlist(int)
2000 /usr/include/c++/8/bits/shared_p ... ad_accumulator(at::Tensor const&)
2000 /usr/include/c++/8/bits/move.h:c ... te<c10::AutogradMetaInterface> >)
2000 /usr/include/c++/8/bits/atomic_b ... DispatchKey&&, caffe2::TypeMeta&)
2000 /usr/include/c++/8/array:at::Ten ... , at::Tensor&, c10::Scalar) const
Total: 8869966""",
)
self.regularizeAndAssertExpectedInline(
stats_no_data.stats(inclusive=True),
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
8959166 ???:0x0000000000001050 [/usr/lib64/ld-2.28.so]
8959166 ???:(below main) [/usr/lib64/libc-2.28.so]
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
8959166 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
...
92821 /tmp/build/80754af9/python_15996 ... a3/envs/throwaway/bin/python3.6]
91000 build/../torch/csrc/tensor/pytho ... ch/torch/lib/libtorch_python.so]
91000 /data/users/test_user/repos/pyto ... nsors::get_default_scalar_type()
90090 ???:pthread_mutex_lock [/usr/lib64/libpthread-2.28.so]
90000 build/../c10/core/TensorImpl.h:c ... ch/torch/lib/libtorch_python.so]
90000 build/../aten/src/ATen/record_fu ... torch/torch/lib/libtorch_cpu.so]
90000 /data/users/test_user/repos/pyto ... uard(c10::optional<c10::Device>)
90000 /data/users/test_user/repos/pyto ... ersionCounter::~VersionCounter()
88000 /data/users/test_user/repos/pyto ... ratorKernel*, at::Tensor const&)""",
)
self.regularizeAndAssertExpectedInline(
wide_linewidth,
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
408000 ???:__tls_get_addr [/usr/lib64/ld-2.28.so]
388193 ???:_int_free [/usr/lib64/libc-2.28.so]
274000 build/../torch/csrc/utils/python_arg_parser.cpp:torch::FunctionSignature ... bool) [/data/users/test_user/repos/pytorch/torch/lib/libtorch_python.so]
264000 build/../aten/src/ATen/record_function.cpp:at::RecordFunction::RecordFun ... ordScope) [/data/users/test_user/repos/pytorch/torch/lib/libtorch_cpu.so]
192000 build/../c10/core/Device.h:c10::Device::validate() [/data/users/test_user/repos/pytorch/torch/lib/libc10.so]
169855 ???:_int_malloc [/usr/lib64/libc-2.28.so]
154000 build/../c10/core/TensorOptions.h:c10::TensorOptions::merge_in(c10::Tens ... ns) const [/data/users/test_user/repos/pytorch/torch/lib/libtorch_cpu.so]
148561 /tmp/build/80754af9/python_1599604603603/work/Python/ceval.c:_PyEval_EvalFrameDefault [/home/test_user/miniconda3/envs/throwaway/bin/python3.6]
135000 ???:malloc [/usr/lib64/libc-2.28.so]
...
2000 /usr/include/c++/8/ext/new_allocator.h:torch::PythonArgs::intlist(int)
2000 /usr/include/c++/8/bits/stl_vector.h:torch::PythonArgParser::raw_parse(_object*, _object*, _object*, _object**)
2000 /usr/include/c++/8/bits/stl_vector.h:torch::PyWarningHandler::~PyWarningHandler()
2000 /usr/include/c++/8/bits/stl_vector.h:torch::FunctionSignature::parse(_object*, _object*, _object*, _object**, bool)
2000 /usr/include/c++/8/bits/stl_algobase.h:torch::PythonArgs::intlist(int)
2000 /usr/include/c++/8/bits/shared_ptr_base.h:torch::autograd::impl::try_get_grad_accumulator(at::Tensor const&)
2000 /usr/include/c++/8/bits/move.h:c10::TensorImpl::set_autograd_meta(std::u ... AutogradMetaInterface, std::default_delete<c10::AutogradMetaInterface> >)
2000 /usr/include/c++/8/bits/atomic_base.h:at::Tensor at::detail::make_tensor ... t_null_type<c10::StorageImpl> >&&, c10::DispatchKey&&, caffe2::TypeMeta&)
2000 /usr/include/c++/8/array:at::Tensor& c10::Dispatcher::callWithDispatchKe ... , c10::Scalar)> const&, c10::DispatchKey, at::Tensor&, c10::Scalar) const
Total: 8869966""" # noqa: B950
)
self.regularizeAndAssertExpectedInline(
stats_no_data.as_standardized().stats(),
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
408000 ???:__tls_get_addr
388193 ???:_int_free
274000 build/../torch/csrc/utils/python ... ject*, _object*, _object**, bool)
264000 build/../aten/src/ATen/record_fu ... ::RecordFunction(at::RecordScope)
192000 build/../c10/core/Device.h:c10::Device::validate()
169855 ???:_int_malloc
154000 build/../c10/core/TensorOptions. ... erge_in(c10::TensorOptions) const
148561 Python/ceval.c:_PyEval_EvalFrameDefault
135000 ???:malloc
...
2000 /usr/include/c++/8/ext/new_allocator.h:torch::PythonArgs::intlist(int)
2000 /usr/include/c++/8/bits/stl_vect ... *, _object*, _object*, _object**)
2000 /usr/include/c++/8/bits/stl_vect ... rningHandler::~PyWarningHandler()
2000 /usr/include/c++/8/bits/stl_vect ... ject*, _object*, _object**, bool)
2000 /usr/include/c++/8/bits/stl_algobase.h:torch::PythonArgs::intlist(int)
2000 /usr/include/c++/8/bits/shared_p ... ad_accumulator(at::Tensor const&)
2000 /usr/include/c++/8/bits/move.h:c ... te<c10::AutogradMetaInterface> >)
2000 /usr/include/c++/8/bits/atomic_b ... DispatchKey&&, caffe2::TypeMeta&)
2000 /usr/include/c++/8/array:at::Ten ... , at::Tensor&, c10::Scalar) const
Total: 8869966""",
)
self.regularizeAndAssertExpectedInline(
deltas,
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
85000 Objects/dictobject.c:lookdict_unicode
59089 ???:_int_free
43000 ???:malloc
25000 build/../torch/csrc/utils/python ... :torch::PythonArgs::intlist(int)
24000 ???:__tls_get_addr
23000 ???:free
21067 Objects/dictobject.c:lookdict_unicode_nodummy
20000 build/../torch/csrc/utils/python ... :torch::PythonArgs::intlist(int)
18000 Objects/longobject.c:PyLong_AsLongLongAndOverflow
...
2000 /home/nwani/m3/conda-bld/compile ... del_op.cc:operator delete(void*)
1000 /usr/include/c++/8/bits/stl_vector.h:torch::PythonArgs::intlist(int)
193 ???:_int_malloc
75 ???:_int_memalign
-1000 build/../c10/util/SmallVector.h: ... _contiguous(c10::ArrayRef<long>)
-1000 build/../c10/util/SmallVector.h: ... nsor_restride(c10::MemoryFormat)
-1000 /usr/include/c++/8/bits/stl_vect ... es(_object*, _object*, _object*)
-8000 Python/ceval.c:_PyEval_EvalFrameDefault
-16000 Objects/tupleobject.c:PyTuple_New
Total: 432917""",
)
self.regularizeAndAssertExpectedInline(len(deltas), """35""")
self.regularizeAndAssertExpectedInline(
deltas.transform(custom_transforms),
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
85000 Objects/dictobject.c:lookdict_unicode
59089 ???:_int_free
43000 ???:malloc
25000 torch/csrc/utils/python_numbers.h:torch::PythonArgs::intlist(int)
24000 ???:__tls_get_addr
23000 ???:free
21067 Objects/dictobject.c:lookdict_unicode_nodummy
20000 torch/csrc/utils/python_arg_parser.h:torch::PythonArgs::intlist(int)
18000 Objects/longobject.c:PyLong_AsLongLongAndOverflow
...
2000 c10/util/SmallVector.h:c10::TensorImpl::compute_contiguous() const
1000 stl_vector.h:torch::PythonArgs::intlist(int)
193 ???:_int_malloc
75 ???:_int_memalign
-1000 stl_vector.h:torch::autograd::TH ... es(_object*, _object*, _object*)
-1000 c10/util/SmallVector.h:c10::Tens ... _contiguous(c10::ArrayRef<long>)
-1000 c10/util/SmallVector.h:c10::Tens ... nsor_restride(c10::MemoryFormat)
-8000 Python/ceval.c:_PyEval_EvalFrameDefault
-16000 Objects/tupleobject.c:PyTuple_New
Total: 432917""",
)
self.regularizeAndAssertExpectedInline(
deltas.filter(lambda fn: fn.startswith("???")),
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
59089 ???:_int_free
43000 ???:malloc
24000 ???:__tls_get_addr
23000 ???:free
193 ???:_int_malloc
75 ???:_int_memalign
Total: 149357""",
)
self.regularizeAndAssertExpectedInline(
deltas[:5],
"""\
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0xXXXXXXXXXXXX>
85000 Objects/dictobject.c:lookdict_unicode
59089 ???:_int_free
43000 ???:malloc
25000 build/../torch/csrc/utils/python_ ... h:torch::PythonArgs::intlist(int)
24000 ???:__tls_get_addr
Total: 236089""",
)
def test_compare(self):
# Simulate several approaches.
costs = (
# overhead_optimized_fn()
(1e-6, 1e-9),
# compute_optimized_fn()
(3e-6, 5e-10),
# special_case_fn() [square inputs only]
(1e-6, 4e-10),
)
sizes = (
(16, 16),
(16, 128),
(128, 128),
(4096, 1024),
(2048, 2048),
)
# overhead_optimized_fn()
class _MockTimer_0(self._MockTimer):
_function_costs = tuple(
(f"fn({i}, {j})", costs[0][0] + costs[0][1] * i * j)
for i, j in sizes
)
class MockTimer_0(benchmark_utils.Timer):
_timer_cls = _MockTimer_0
# compute_optimized_fn()
class _MockTimer_1(self._MockTimer):
_function_costs = tuple(
(f"fn({i}, {j})", costs[1][0] + costs[1][1] * i * j)
for i, j in sizes
)
class MockTimer_1(benchmark_utils.Timer):
_timer_cls = _MockTimer_1
# special_case_fn()
class _MockTimer_2(self._MockTimer):
_function_costs = tuple(
(f"fn({i}, {j})", costs[2][0] + costs[2][1] * i * j)
for i, j in sizes if i == j
)
class MockTimer_2(benchmark_utils.Timer):
_timer_cls = _MockTimer_2
results = []
for i, j in sizes:
results.append(
MockTimer_0(
f"fn({i}, {j})",
label="fn",
description=f"({i}, {j})",
sub_label="overhead_optimized",
).blocked_autorange(min_run_time=10)
)
results.append(
MockTimer_1(
f"fn({i}, {j})",
label="fn",
description=f"({i}, {j})",
sub_label="compute_optimized",
).blocked_autorange(min_run_time=10)
)
if i == j:
results.append(
MockTimer_2(
f"fn({i}, {j})",
label="fn",
description=f"({i}, {j})",
sub_label="special_case (square)",
).blocked_autorange(min_run_time=10)
)
def rstrip_lines(s: str) -> str:
# VSCode will rstrip the `expected` string literal whether you like
# it or not. So we have to rstrip the compare table as well.
return "\n".join([i.rstrip() for i in s.splitlines(keepends=False)])
compare = benchmark_utils.Compare(results)
self.regularizeAndAssertExpectedInline(
rstrip_lines(str(compare).strip()),
"""\
[------------------------------------------------- fn ------------------------------------------------]
| (16, 16) | (16, 128) | (128, 128) | (4096, 1024) | (2048, 2048)
1 threads: --------------------------------------------------------------------------------------------
overhead_optimized | 1.3 | 3.0 | 17.4 | 4174.4 | 4174.4
compute_optimized | 3.1 | 4.0 | 11.2 | 2099.3 | 2099.3
special_case (square) | 1.1 | | 7.5 | | 1674.7
Times are in microseconds (us)."""
)
compare.trim_significant_figures()
self.regularizeAndAssertExpectedInline(
rstrip_lines(str(compare).strip()),
"""\
[------------------------------------------------- fn ------------------------------------------------]
| (16, 16) | (16, 128) | (128, 128) | (4096, 1024) | (2048, 2048)
1 threads: --------------------------------------------------------------------------------------------
overhead_optimized | 1 | 3.0 | 17 | 4200 | 4200
compute_optimized | 3 | 4.0 | 11 | 2100 | 2100
special_case (square) | 1 | | 8 | | 1700
Times are in microseconds (us)."""
)
compare.colorize()
columnwise_colored_actual = rstrip_lines(str(compare).strip())
columnwise_colored_expected = textwrap.dedent(
"""\
[------------------------------------------------- fn ------------------------------------------------]
| (16, 16) | (16, 128) | (128, 128) | (4096, 1024) | (2048, 2048)
1 threads: --------------------------------------------------------------------------------------------
overhead_optimized | 1 | \x1b[92m\x1b[1m 3.0 \x1b[0m\x1b[0m | \x1b[2m\x1b[91m 17 \x1b[0m\x1b[0m | 4200 | \x1b[2m\x1b[91m 4200 \x1b[0m\x1b[0m
compute_optimized | \x1b[2m\x1b[91m 3 \x1b[0m\x1b[0m | 4.0 | 11 | \x1b[92m\x1b[1m 2100 \x1b[0m\x1b[0m | 2100
special_case (square) | \x1b[92m\x1b[1m 1 \x1b[0m\x1b[0m | | \x1b[92m\x1b[1m 8 \x1b[0m\x1b[0m | | \x1b[92m\x1b[1m 1700 \x1b[0m\x1b[0m
Times are in microseconds (us).""" # noqa: B950
)
compare.colorize(rowwise=True)
rowwise_colored_actual = rstrip_lines(str(compare).strip())
rowwise_colored_expected = textwrap.dedent(
"""\
[------------------------------------------------- fn ------------------------------------------------]
| (16, 16) | (16, 128) | (128, 128) | (4096, 1024) | (2048, 2048)
1 threads: --------------------------------------------------------------------------------------------
overhead_optimized | \x1b[92m\x1b[1m 1 \x1b[0m\x1b[0m | \x1b[2m\x1b[91m 3.0 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 17 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 4200 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 4200 \x1b[0m\x1b[0m
compute_optimized | \x1b[92m\x1b[1m 3 \x1b[0m\x1b[0m | 4.0 | \x1b[2m\x1b[91m 11 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 2100 \x1b[0m\x1b[0m | \x1b[31m\x1b[1m 2100 \x1b[0m\x1b[0m
special_case (square) | \x1b[92m\x1b[1m 1 \x1b[0m\x1b[0m | | \x1b[31m\x1b[1m 8 \x1b[0m\x1b[0m | | \x1b[31m\x1b[1m 1700 \x1b[0m\x1b[0m
Times are in microseconds (us).""" # noqa: B950
)
def print_new_expected(s: str) -> None:
print(f'{"":>12}"""\\', end="")
for l in s.splitlines(keepends=False):
print("\n" + textwrap.indent(repr(l)[1:-1], " " * 12), end="")
print('"""\n')
if expecttest.ACCEPT:
# expecttest does not currently support non-printable characters,
# so these two entries have to be updated manually.
if columnwise_colored_actual != columnwise_colored_expected:
print("New columnwise coloring:\n")
print_new_expected(columnwise_colored_actual)
if rowwise_colored_actual != rowwise_colored_expected:
print("New rowwise coloring:\n")
print_new_expected(rowwise_colored_actual)
self.assertEqual(columnwise_colored_actual, columnwise_colored_expected)
self.assertEqual(rowwise_colored_actual, rowwise_colored_expected)
@unittest.skipIf(IS_WINDOWS and os.getenv("VC_YEAR") == "2019", "Random seed only accepts int32")
def test_fuzzer(self):
fuzzer = benchmark_utils.Fuzzer(
parameters=[
benchmark_utils.FuzzedParameter(
"n", minval=1, maxval=16, distribution="loguniform")],
tensors=[benchmark_utils.FuzzedTensor("x", size=("n",))],
seed=0,
)
expected_results = [
(0.7821, 0.0536, 0.9888, 0.1949, 0.5242, 0.1987, 0.5094),
(0.7166, 0.5961, 0.8303, 0.005),
]
for i, (tensors, _, _) in enumerate(fuzzer.take(2)):
x = tensors["x"]
self.assertEqual(
x, torch.tensor(expected_results[i]), rtol=1e-3, atol=1e-3)
if __name__ == '__main__':
run_tests()
|