File: init_baseline.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (72 lines) | stat: -rw-r--r-- 2,059 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""Script to generate baseline values from PyTorch initialization algorithms"""

import sys
import torch

HEADER = """
#include <torch/types.h>

#include <vector>

namespace expected_parameters {
"""

FOOTER = "} // namespace expected_parameters"

PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{"

INITIALIZERS = {
    "Xavier_Uniform": lambda w: torch.nn.init.xavier_uniform(w),
    "Xavier_Normal": lambda w: torch.nn.init.xavier_normal(w),
    "Kaiming_Normal": lambda w: torch.nn.init.kaiming_normal(w),
    "Kaiming_Uniform": lambda w: torch.nn.init.kaiming_uniform(w)
}


def emit(initializer_parameter_map):
    # Don't write generated with an @ in front, else this file is recognized as generated.
    print("// @{} from {}".format('generated', __file__))
    print(HEADER)
    for initializer_name, weights in initializer_parameter_map.items():
        print(PARAMETERS.format(initializer_name))
        print("  return {")
        for sample in weights:
            print("    {")
            for parameter in sample:
                parameter_values = "{{{}}}".format(", ".join(map(str, parameter)))
                print("      torch::tensor({}),".format(parameter_values))
            print("    },")
        print("  };")
        print("}\n")
    print(FOOTER)


def run(initializer):
    torch.manual_seed(0)

    layer1 = torch.nn.Linear(7, 15)
    INITIALIZERS[initializer](layer1.weight)

    layer2 = torch.nn.Linear(15, 15)
    INITIALIZERS[initializer](layer2.weight)

    layer3 = torch.nn.Linear(15, 2)
    INITIALIZERS[initializer](layer3.weight)

    weight1 = layer1.weight.data.numpy()
    weight2 = layer2.weight.data.numpy()
    weight3 = layer3.weight.data.numpy()

    return [weight1, weight2, weight3]


def main():
    initializer_parameter_map = {}
    for initializer in INITIALIZERS.keys():
        sys.stderr.write('Evaluating {} ...\n'.format(initializer))
        initializer_parameter_map[initializer] = run(initializer)

    emit(initializer_parameter_map)

if __name__ == "__main__":
    main()