File: meta_tensor.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (35 lines) | stat: -rw-r--r-- 1,179 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <gtest/gtest.h>

#include <ATen/MetaFunctions.h>
#include <torch/torch.h>

#include <vector>

TEST(MetaTensorTest, MetaDeviceApi) {
  auto a = at::ones({4}, at::kFloat);
  auto b = at::ones({3, 4}, at::kFloat);
  // at::add() will return a meta tensor if its inputs are also meta tensors.
  auto out_meta = at::add(a.to(c10::kMeta), b.to(c10::kMeta));

  ASSERT_EQ(a.device(), c10::kCPU);
  ASSERT_EQ(b.device(), c10::kCPU);
  ASSERT_EQ(out_meta.device(), c10::kMeta);
  c10::IntArrayRef sizes_actual = out_meta.sizes();
  std::vector<int64_t> sizes_expected = std::vector<int64_t>{3, 4};
  ASSERT_EQ(sizes_actual, sizes_expected);
}

TEST(MetaTensorTest, MetaNamespaceApi) {
  auto a = at::ones({4}, at::kFloat);
  auto b = at::ones({3, 4}, at::kFloat);
  // The at::meta:: namespace take in tensors from any backend
  // and return a meta tensor.
  auto out_meta = at::meta::add(a, b);

  ASSERT_EQ(a.device(), c10::kCPU);
  ASSERT_EQ(b.device(), c10::kCPU);
  ASSERT_EQ(out_meta.device(), c10::kMeta);
  c10::IntArrayRef sizes_actual = out_meta.sizes();
  std::vector<int64_t> sizes_expected = std::vector<int64_t>{3, 4};
  ASSERT_EQ(sizes_actual, sizes_expected);
}