1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
#include <gtest/gtest.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/functions/comm.h>
#include <torch/nn/module.h>
#include <torch/nn/modules/conv.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/parallel/data_parallel.h>
#include <torch/nn/pimpl.h>
#include <torch/optim/sgd.h>
#include <torch/types.h>
#include <torch/utils.h>
#include <test/cpp/api/support.h>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
using namespace torch::autograd;
using namespace torch::nn;
struct ParallelTest : torch::test::SeedingFixture {};
TEST_F(ParallelTest, DifferentiableScatter_MultiCUDA) {
Scatter scatter(
{torch::Device(torch::kCUDA, 0), torch::Device(torch::kCUDA, 1)});
auto input = torch::ones(10, torch::requires_grad(true));
auto output = scatter.apply({input});
ASSERT_EQ(output.size(), 2);
ASSERT_EQ(output[0].size(0), 5);
ASSERT_EQ(output[1].size(0), 5);
ASSERT_TRUE(torch::cat({output[0].to(torch::kCPU), output[1].to(torch::kCPU)})
.allclose(input));
torch::Tensor sum = output[0].to({torch::kCUDA, 1}) + output[1];
sum.backward(torch::ones_like(sum));
ASSERT_TRUE(input.grad().defined());
ASSERT_TRUE(input.grad().device().is_cpu());
ASSERT_EQ(input.grad().sum().item<int32_t>(), 10);
}
TEST_F(ParallelTest, DifferentiableGather_MultiCUDA) {
Gather gather(torch::Device(torch::kCUDA, 1));
auto a = torch::ones(5, torch::requires_grad(true).device(torch::kCUDA, 0));
auto b = torch::ones(5, torch::requires_grad(true).device(torch::kCUDA, 1));
auto outputs = gather.apply({a, b});
ASSERT_EQ(outputs.size(), 1);
torch::Tensor output = outputs.front();
ASSERT_EQ(output.size(0), 10);
ASSERT_EQ(output.device(), torch::Device(torch::kCUDA, 1));
auto chunks = output.chunk(2);
ASSERT_TRUE(chunks[0].to({torch::kCUDA, 0}).allclose(a));
ASSERT_TRUE(chunks[1].allclose(b));
output.backward(torch::ones_like(output));
ASSERT_TRUE(a.grad().defined());
ASSERT_EQ(a.grad().device(), torch::Device(torch::kCUDA, 0));
ASSERT_EQ(a.grad().sum().item<int32_t>(), 5);
ASSERT_TRUE(b.grad().defined());
ASSERT_EQ(b.grad().device(), torch::Device(torch::kCUDA, 1));
ASSERT_EQ(b.grad().sum().item<int32_t>(), 5);
}
TEST_F(ParallelTest, Replicate_MultiCUDA) {
Linear linear(3, 4);
auto replicas = parallel::replicate(
linear, {torch::Device(torch::kCUDA, 0), torch::Device(torch::kCUDA, 1)});
ASSERT_EQ(replicas.size(), 2);
auto original_parameters = linear->parameters();
auto replica1_parameters = replicas[0]->parameters();
for (auto& parameter : replica1_parameters) {
ASSERT_EQ(parameter.device(), torch::Device(torch::kCUDA, 0));
}
replicas[0]->to(torch::kCPU);
ASSERT_EQ(replica1_parameters.size(), original_parameters.size());
for (const auto i : c10::irange(original_parameters.size())) {
ASSERT_TRUE(replica1_parameters[i].allclose(original_parameters[i]));
ASSERT_TRUE(
replica1_parameters[i].data_ptr<float>() !=
original_parameters[i].data_ptr<float>());
}
auto replica2_parameters = replicas[1]->parameters();
for (auto& parameter : replica2_parameters) {
ASSERT_EQ(parameter.device(), torch::Device(torch::kCUDA, 1));
}
replicas[1]->to(torch::kCPU);
ASSERT_EQ(replica2_parameters.size(), original_parameters.size());
for (const auto i : c10::irange(original_parameters.size())) {
ASSERT_TRUE(replica2_parameters[i].allclose(original_parameters[i]));
ASSERT_TRUE(
replica2_parameters[i].data_ptr<float>() !=
original_parameters[i].data_ptr<float>());
}
}
TEST_F(ParallelTest, ParallelApply_MultiCUDA) {
Linear a(3, 4);
Linear b(std::dynamic_pointer_cast<LinearImpl>(a->clone()));
b->to({torch::kCUDA, 0});
Linear c(std::dynamic_pointer_cast<LinearImpl>(a->clone()));
c->to({torch::kCUDA, 1});
std::vector<Linear> modules = {a, b, c};
std::vector<torch::Tensor> inputs = {
torch::ones({2, 3}),
torch::ones({2, 3}, torch::device({torch::kCUDA, 0})),
torch::ones({2, 3}, torch::device({torch::kCUDA, 1}))};
auto outputs = parallel::parallel_apply(modules, inputs);
ASSERT_EQ(outputs.size(), 3);
ASSERT_TRUE(outputs[0].device().is_cpu());
ASSERT_EQ(outputs[1].device(), torch::Device(torch::kCUDA, 0));
ASSERT_TRUE(outputs[1].to(torch::kCPU).allclose(outputs[0]));
ASSERT_EQ(outputs[2].device(), torch::Device(torch::kCUDA, 1));
ASSERT_TRUE(outputs[2].to(torch::kCPU).allclose(outputs[0]));
}
TEST_F(ParallelTest, ParallelApplyWithDifferentOutputDevice_MultiCUDA) {
struct M : torch::nn::Module {
torch::Tensor forward(torch::Tensor input) {
return torch::ones(5, torch::kInt32);
}
};
std::vector<std::shared_ptr<M>> modules = {
std::make_shared<M>(), std::make_shared<M>(), std::make_shared<M>()};
std::vector<torch::Tensor> inputs = {
torch::empty({}), torch::empty({}), torch::empty({})};
std::vector<torch::Device> devices = {
{torch::kCUDA, 1}, {torch::kCUDA, 0}, {torch::kCPU}};
auto outputs = parallel::parallel_apply(modules, inputs, devices);
ASSERT_EQ(outputs.size(), 3);
ASSERT_TRUE(outputs[0].device().is_cuda());
ASSERT_EQ(outputs[0].device(), torch::Device(torch::kCUDA, 1));
ASSERT_TRUE(outputs[1].device().is_cuda());
ASSERT_EQ(outputs[1].device(), torch::Device(torch::kCUDA, 0));
ASSERT_TRUE(outputs[2].device().is_cpu());
}
TEST_F(ParallelTest, ParallelApplyRethrowsException_MultiCUDA) {
struct M : torch::nn::Cloneable<M> {
void reset() override {}
torch::Tensor forward(torch::Tensor input) {
throw std::runtime_error("Badness!");
}
};
auto m = std::make_shared<M>();
auto input = torch::ones({10, 3});
ASSERT_THROWS_WITH(parallel::data_parallel(m, input), "Badness!");
}
TEST_F(
ParallelTest,
DataParallelPlacesTheOutputOnTheRequestedDevice_MultiCUDA) {
struct M : torch::nn::Cloneable<M> {
void reset() override {}
torch::Tensor forward(torch::Tensor input) {
// The returned tensor should be on the output device.
return torch::ones(3);
}
};
auto m = std::make_shared<M>();
auto input = torch::ones({10, 3});
{
auto output = parallel::data_parallel(
m,
input,
/*devices=*/torch::nullopt,
/*output_device=*/torch::Device(torch::kCUDA, 1));
ASSERT_TRUE(output.defined());
ASSERT_TRUE(output.device().is_cuda());
ASSERT_EQ(output.device().index(), 1);
}
{
// Verify for the single-device case (where we don't scatter/gather).
auto output = parallel::data_parallel(
m,
input,
/*devices=*/std::vector<torch::Device>{torch::Device(torch::kCUDA, 0)},
/*output_device=*/torch::Device(torch::kCUDA, 1));
ASSERT_TRUE(output.defined());
ASSERT_TRUE(output.device().is_cuda());
ASSERT_EQ(output.device().index(), 1);
}
}
TEST_F(ParallelTest, DataParallelUsesAllAvailableCUDADevices_CUDA) {
struct M : torch::nn::Cloneable<M> {
void reset() override {}
torch::Tensor forward(torch::Tensor input) {
return torch::tensor({input.device().index()});
}
};
auto m = std::make_shared<M>();
const auto device_count = torch::cuda::device_count();
auto input = torch::ones({std::max(10, int(2 * device_count)), 3});
auto output = parallel::data_parallel(m, input);
ASSERT_EQ(output.numel(), device_count);
for (const auto i : c10::irange(device_count)) {
ASSERT_EQ(output[i].item<int32_t>(), i);
}
}
TEST_F(ParallelTest, DataParallelNumericalEquivalence_MultiCUDA) {
struct M : torch::nn::Cloneable<M> {
M() {
reset();
}
void reset() override {
conv = register_module(
"conv",
torch::nn::Conv2d(torch::nn::Conv2dOptions(2, 2, /*kernel_size=*/2)));
fc = register_module("fc", torch::nn::Linear(8, 2));
}
torch::Tensor forward(torch::Tensor x) {
x = conv->forward(x);
x = torch::relu(x);
x = x.view({-1, 8});
x = fc->forward(x);
return torch::log_softmax(x, /*dim=*/1);
}
torch::nn::Conv2d conv{nullptr};
torch::nn::Linear fc{nullptr};
};
// prepare modules and inputs
auto input = torch::ones({16, 2, 3, 3});
auto input_dp = torch::ones({16, 2, 3, 3});
auto model = std::make_shared<M>();
auto model_dp = std::dynamic_pointer_cast<M>(model->clone());
// run 3 training iterations
for (const auto i : c10::irange(3)) {
input += i;
input_dp += i;
// non-prallel training
torch::optim::SGD optim(model->parameters(), torch::optim::SGDOptions(0.1));
auto output = model->forward(input);
auto loss = torch::mse_loss(output, torch::zeros_like(output));
loss.backward();
optim.step();
// data-parallel training
torch::optim::SGD optim_dp(
model_dp->parameters(), torch::optim::SGDOptions(0.1));
auto output_dp = parallel::data_parallel(model_dp, input_dp);
auto loss_dp = torch::mse_loss(output_dp, torch::zeros_like(output_dp));
loss_dp.backward();
optim_dp.step();
// make sure that weights are the same
model->to(torch::kCPU);
model_dp->to(torch::kCPU);
auto params = model->parameters();
auto params_dp = model_dp->parameters();
ASSERT_EQ(params.size(), params_dp.size());
for (auto it = params.begin(), it_dp = params_dp.begin();
it != params.end() && it_dp != params.end();
++it, ++it_dp) {
ASSERT_TRUE(torch::allclose(*it, *it_dp));
}
}
}
|