1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
|
#include <gtest/gtest.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <c10/util/tempfile.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <cstdio>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
using namespace torch::test;
using namespace torch::nn;
using namespace torch::optim;
namespace {
Sequential xor_model() {
return Sequential(
Linear(2, 8),
Functional(at::sigmoid),
Linear(8, 1),
Functional(at::sigmoid));
}
torch::Tensor save_and_load(torch::Tensor input) {
std::stringstream stream;
torch::save(input, stream);
torch::Tensor tensor;
torch::load(tensor, stream);
return tensor;
}
} // namespace
template <typename DerivedOptions>
void is_optimizer_param_group_equal(
const OptimizerParamGroup& lhs,
const OptimizerParamGroup& rhs) {
const auto& lhs_params = lhs.params();
const auto& rhs_params = rhs.params();
ASSERT_TRUE(lhs_params.size() == rhs_params.size());
for (const auto j : c10::irange(lhs_params.size())) {
ASSERT_TRUE(torch::equal(lhs_params[j], rhs_params[j]));
}
ASSERT_TRUE(
static_cast<const DerivedOptions&>(lhs.options()) ==
static_cast<const DerivedOptions&>(rhs.options()));
}
template <typename DerivedOptimizerParamState>
void is_optimizer_state_equal(
const ska::flat_hash_map<std::string, std::unique_ptr<OptimizerParamState>>&
lhs_state,
const ska::flat_hash_map<std::string, std::unique_ptr<OptimizerParamState>>&
rhs_state) {
ASSERT_TRUE(lhs_state.size() == rhs_state.size());
for (const auto& value : lhs_state) {
auto found = rhs_state.find(value.first);
ASSERT_TRUE(found != rhs_state.end());
const DerivedOptimizerParamState& lhs_curr_state =
static_cast<const DerivedOptimizerParamState&>(*(value.second.get()));
const DerivedOptimizerParamState& rhs_curr_state =
static_cast<const DerivedOptimizerParamState&>(*(found->second.get()));
ASSERT_TRUE(lhs_curr_state == rhs_curr_state);
}
}
template <
typename OptimizerClass,
typename DerivedOptimizerOptions,
typename DerivedOptimizerParamState>
void test_serialize_optimizer(
DerivedOptimizerOptions options,
bool only_has_global_state = false) {
torch::manual_seed(0);
auto model1 = Linear(5, 2);
auto model2 = Linear(5, 2);
auto model3 = Linear(5, 2);
// Models 1, 2, 3 will have the same parameters.
auto model_tempfile = c10::make_tempfile();
torch::save(model1, model_tempfile.name);
torch::load(model2, model_tempfile.name);
torch::load(model3, model_tempfile.name);
auto param1 = model1->named_parameters();
auto param2 = model2->named_parameters();
auto param3 = model3->named_parameters();
for (const auto& p : param1) {
ASSERT_TRUE(p->allclose(param2[p.key()]));
ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
}
// Make some optimizers
auto optim1 = OptimizerClass(
{torch::optim::OptimizerParamGroup(model1->parameters())}, options);
auto optim2 = OptimizerClass(model2->parameters(), options);
auto optim2_2 = OptimizerClass(model2->parameters(), options);
auto optim3 = OptimizerClass(model3->parameters(), options);
auto optim3_2 = OptimizerClass(model3->parameters(), options);
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
auto closure = []() { return torch::tensor({10}); };
optimizer.step(closure);
};
// Do 2 steps of model1
step(optim1, model1);
step(optim1, model1);
// Do 2 steps of model 2 without saving the optimizer
step(optim2, model2);
step(optim2_2, model2);
// Do 1 step of model 3
step(optim3, model3);
// save the optimizer
auto optim_tempfile = c10::make_tempfile();
torch::save(optim3, optim_tempfile.name);
torch::load(optim3_2, optim_tempfile.name);
auto& optim3_2_param_groups = optim3_2.param_groups();
auto& optim3_param_groups = optim3.param_groups();
auto& optim3_2_state = optim3_2.state();
auto& optim3_state = optim3.state();
// optim3_2 and optim1 should have param_groups and state of size 1 and
// state_size respectively
ASSERT_TRUE(optim3_2_param_groups.size() == 1);
// state_size = 2 for all optimizers except LBFGS as LBFGS only maintains one
// global state
unsigned state_size = only_has_global_state ? 1 : 2;
ASSERT_TRUE(optim3_2_state.size() == state_size);
// optim3_2 and optim1 should have param_groups and state of same size
ASSERT_TRUE(optim3_2_param_groups.size() == optim3_param_groups.size());
ASSERT_TRUE(optim3_2_state.size() == optim3_state.size());
// checking correctness of serialization logic for optimizer.param_groups_ and
// optimizer.state_
for (const auto i : c10::irange(optim3_2_param_groups.size())) {
is_optimizer_param_group_equal<DerivedOptimizerOptions>(
optim3_2_param_groups[i], optim3_param_groups[i]);
is_optimizer_state_equal<DerivedOptimizerParamState>(
optim3_2_state, optim3_state);
}
// Do step2 for model 3
step(optim3_2, model3);
param1 = model1->named_parameters();
param2 = model2->named_parameters();
param3 = model3->named_parameters();
for (const auto& p : param1) {
const auto& name = p.key();
// Model 1 and 3 should be the same
ASSERT_TRUE(
param1[name].norm().item<float>() == param3[name].norm().item<float>());
ASSERT_TRUE(
param1[name].norm().item<float>() != param2[name].norm().item<float>());
}
}
/// Utility function to save a value of `int64_t` type.
void write_int_value(
torch::serialize::OutputArchive& archive,
const std::string& key,
const int64_t& value) {
archive.write(key, c10::IValue(value));
}
// Utility function to save a vector of buffers.
template <typename BufferContainer>
void write_tensors_to_archive(
torch::serialize::OutputArchive& archive,
const std::string& key,
const BufferContainer& buffers) {
archive.write(
key + "/size", torch::tensor(static_cast<int64_t>(buffers.size())));
for (const auto index : c10::irange(buffers.size())) {
archive.write(
key + "/" + c10::to_string(index), buffers[index], /*is_buffer=*/true);
}
}
// Utility function to save a vector of step buffers.
void write_step_buffers(
torch::serialize::OutputArchive& archive,
const std::string& key,
const std::vector<int64_t>& steps) {
std::vector<torch::Tensor> tensors;
tensors.reserve(steps.size());
for (const auto& step : steps) {
tensors.push_back(torch::tensor(static_cast<int64_t>(step)));
}
write_tensors_to_archive(archive, key, tensors);
}
#define OLD_SERIALIZATION_LOGIC_WARNING_CHECK(funcname, optimizer, filename) \
{ \
WarningCapture warnings; \
funcname(optimizer, filename); \
ASSERT_EQ( \
count_substr_occurrences(warnings.str(), "old serialization"), 1); \
}
TEST(SerializeTest, KeysFunc) {
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
for (const auto i : c10::irange(3)) {
output_archive.write(
"element/" + c10::to_string(i), c10::IValue(static_cast<int64_t>(i)));
}
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
std::vector<std::string> keys = input_archive.keys();
ASSERT_EQ(keys.size(), 3);
for (const auto i : c10::irange(keys.size())) {
ASSERT_EQ(keys[i], "element/" + c10::to_string(i));
}
}
TEST(SerializeTest, TryReadFunc) {
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
for (const auto i : c10::irange(3)) {
output_archive.write(
"element/" + c10::to_string(i), c10::IValue(static_cast<int64_t>(i)));
}
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
c10::IValue ivalue;
ASSERT_FALSE(input_archive.try_read("1", ivalue));
ASSERT_TRUE(input_archive.try_read("element/1", ivalue));
ASSERT_EQ(ivalue.toInt(), 1);
}
TEST(SerializeTest, Basic) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, BasicToFile) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
auto tempfile = c10::make_tempfile();
torch::save(x, tempfile.name);
torch::Tensor y;
torch::load(y, tempfile.name);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, BasicViaFunc) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
std::string serialized;
torch::save(x, [&](const void* buf, size_t n) {
serialized.append(reinterpret_cast<const char*>(buf), n);
return n;
});
torch::Tensor y;
torch::load(y, serialized.data(), serialized.size());
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
torch::Tensor z;
torch::load(
z,
[&](uint64_t pos, void* buf, size_t n) -> size_t {
if (pos >= serialized.size())
return 0;
size_t nbytes =
std::min(static_cast<size_t>(pos) + n, serialized.size()) - pos;
memcpy(buf, serialized.data() + pos, nbytes);
return nbytes;
},
[&]() -> size_t { return serialized.size(); });
ASSERT_TRUE(z.defined());
ASSERT_EQ(x.sizes().vec(), z.sizes().vec());
ASSERT_TRUE(x.allclose(z));
}
TEST(SerializeTest, Resized) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x.resize_({5, 5});
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, Sliced) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x = x.slice(0, 1, 5);
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, NonContiguous) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x = x.slice(1, 1, 4);
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, ErrorOnMissingKey) {
struct B : torch::nn::Module {
B(const std::string& name_c) {
register_buffer(name_c, torch::ones(5, torch::kFloat));
}
};
struct A : torch::nn::Module {
A(const std::string& name_b, const std::string& name_c) {
register_module(name_b, std::make_shared<B>(name_c));
}
};
struct M : torch::nn::Module {
M(const std::string& name_a,
const std::string& name_b,
const std::string& name_c) {
register_module(name_a, std::make_shared<A>(name_b, name_c));
}
};
// create a hierarchy of models with names differing below the top level
auto model1 = std::make_shared<M>("a", "b", "c");
auto model2 = std::make_shared<M>("a", "b", "x");
auto model3 = std::make_shared<M>("a", "x", "c");
std::stringstream stream;
torch::save(model1, stream);
// We want the errors to contain hierarchy information, too.
ASSERT_THROWS_WITH(
torch::load(model2, stream), "No such serialized tensor 'a.b.x'");
stream.seekg(0, stream.beg);
ASSERT_THROWS_WITH(
torch::load(model3, stream), "No such serialized submodule: 'a.x'");
}
TEST(SerializeTest, XOR) {
// We better be able to save and load an XOR model!
auto getLoss = [](Sequential model, uint32_t batch_size) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
for (const auto i : c10::irange(batch_size)) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
ASSERT_LT(epoch, 3000);
epoch++;
}
auto tempfile = c10::make_tempfile();
torch::save(model, tempfile.name);
torch::load(model2, tempfile.name);
auto loss = getLoss(model2, 100);
ASSERT_LT(loss.item<float>(), 0.1);
}
TEST(SerializeTest, Optim) {
auto model1 = Linear(5, 2);
auto model2 = Linear(5, 2);
auto model3 = Linear(5, 2);
// Models 1, 2, 3 will have the same parameters.
auto model_tempfile = c10::make_tempfile();
torch::save(model1, model_tempfile.name);
torch::load(model2, model_tempfile.name);
torch::load(model3, model_tempfile.name);
auto param1 = model1->named_parameters();
auto param2 = model2->named_parameters();
auto param3 = model3->named_parameters();
for (const auto& p : param1) {
ASSERT_TRUE(p->allclose(param2[p.key()]));
ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
}
// Make some optimizers with momentum (and thus state)
auto optim1 = torch::optim::SGD(
model1->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2_2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3_2 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
// Do 2 steps of model1
step(optim1, model1);
step(optim1, model1);
// Do 2 steps of model 2 without saving the optimizer
step(optim2, model2);
step(optim2_2, model2);
// Do 2 steps of model 3 while saving the optimizer
step(optim3, model3);
auto optim_tempfile = c10::make_tempfile();
torch::save(optim3, optim_tempfile.name);
torch::load(optim3_2, optim_tempfile.name);
step(optim3_2, model3);
param1 = model1->named_parameters();
param2 = model2->named_parameters();
param3 = model3->named_parameters();
for (const auto& p : param1) {
const auto& name = p.key();
// Model 1 and 3 should be the same
ASSERT_TRUE(
param1[name].norm().item<float>() == param3[name].norm().item<float>());
ASSERT_TRUE(
param1[name].norm().item<float>() != param2[name].norm().item<float>());
}
}
TEST(SerializeTest, Optim_Adagrad) {
test_serialize_optimizer<Adagrad, AdagradOptions, AdagradParamState>(
AdagradOptions(1e-1));
// bc compatibility check
auto model1 = Linear(5, 2);
auto optim1 = torch::optim::Adagrad(
model1->parameters(), torch::optim::AdagradOptions(1e-1));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
auto optim1_2 =
Adagrad(model1->parameters(), torch::optim::AdagradOptions(1e-1));
// fill up with optim1 sum_buffers
std::vector<torch::Tensor> sum_buffers;
// fill up with optim1 state_buffers
std::vector<int64_t> step_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto& param : params_) {
auto key_ = c10::guts::to_string(param.unsafeGetTensorImpl());
const AdagradParamState& curr_state_ =
static_cast<const AdagradParamState&>(*(optim1_state.at(key_).get()));
sum_buffers.emplace_back(curr_state_.sum());
step_buffers.emplace_back(curr_state_.step());
}
// write sum_buffers and step_buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(output_archive, "sum_buffers", sum_buffers);
write_step_buffers(output_archive, "step_buffers", step_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<AdagradParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_SGD) {
test_serialize_optimizer<SGD, SGDOptions, SGDParamState>(
SGDOptions(1e-1).momentum(0.9));
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have a momentum
// buffer entry
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 = torch::optim::SGD(
model1_params, torch::optim::SGDOptions(0.01).momentum(0.9));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<at::Tensor> momentum_buffers;
int64_t iteration_{0};
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto i : c10::irange(params_.size())) {
if (i != (params_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
const SGDParamState& curr_state_ =
static_cast<const SGDParamState&>(*(optim1_state.at(key_).get()));
momentum_buffers.emplace_back(curr_state_.momentum_buffer());
}
}
ASSERT_TRUE(momentum_buffers.size() == (params_.size() - 1));
// write momentum_buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(
output_archive, "momentum_buffers", momentum_buffers);
write_int_value(output_archive, "iteration_", iteration_);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 =
SGD(model1_params, torch::optim::SGDOptions(1e-1).momentum(0.9));
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<SGDParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_Adam) {
test_serialize_optimizer<Adam, AdamOptions, AdamParamState>(
AdamOptions().lr(0.99999).amsgrad(true).weight_decay(0.5));
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have entry in
// buffers
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 = torch::optim::Adam(
model1_params, torch::optim::AdamOptions().weight_decay(0.5));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<int64_t> step_buffers;
std::vector<at::Tensor> exp_average_buffers;
std::vector<at::Tensor> exp_average_sq_buffers;
std::vector<at::Tensor> max_exp_average_sq_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto i : c10::irange(params_.size())) {
if (i != (params_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
const AdamParamState& curr_state_ =
static_cast<const AdamParamState&>(*(optim1_state.at(key_).get()));
step_buffers.emplace_back(curr_state_.step());
exp_average_buffers.emplace_back(curr_state_.exp_avg());
exp_average_sq_buffers.emplace_back(curr_state_.exp_avg_sq());
if (curr_state_.max_exp_avg_sq().defined()) {
max_exp_average_sq_buffers.emplace_back(curr_state_.max_exp_avg_sq());
}
}
}
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_step_buffers(output_archive, "step_buffers", step_buffers);
write_tensors_to_archive(
output_archive, "exp_average_buffers", exp_average_buffers);
write_tensors_to_archive(
output_archive, "exp_average_sq_buffers", exp_average_sq_buffers);
write_tensors_to_archive(
output_archive, "max_exp_average_sq_buffers", max_exp_average_sq_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = Adam(model1_params, torch::optim::AdamOptions());
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<AdamParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_AdamW) {
test_serialize_optimizer<AdamW, AdamWOptions, AdamWParamState>(
AdamWOptions().lr(0.99999).amsgrad(true).betas(
std::make_tuple(0.999, 0.1)));
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have entry in
// buffers
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 = torch::optim::AdamW(
model1_params, torch::optim::AdamWOptions().weight_decay(0.5));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<int64_t> step_buffers;
std::vector<at::Tensor> exp_average_buffers;
std::vector<at::Tensor> exp_average_sq_buffers;
std::vector<at::Tensor> max_exp_average_sq_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto i : c10::irange(params_.size())) {
if (i != (params_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
const AdamWParamState& curr_state_ =
static_cast<const AdamWParamState&>(*(optim1_state.at(key_).get()));
step_buffers.emplace_back(curr_state_.step());
exp_average_buffers.emplace_back(curr_state_.exp_avg());
exp_average_sq_buffers.emplace_back(curr_state_.exp_avg_sq());
if (curr_state_.max_exp_avg_sq().defined()) {
max_exp_average_sq_buffers.emplace_back(curr_state_.max_exp_avg_sq());
}
}
}
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_step_buffers(output_archive, "step_buffers", step_buffers);
write_tensors_to_archive(
output_archive, "exp_average_buffers", exp_average_buffers);
write_tensors_to_archive(
output_archive, "exp_average_sq_buffers", exp_average_sq_buffers);
write_tensors_to_archive(
output_archive, "max_exp_average_sq_buffers", max_exp_average_sq_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = AdamW(model1_params, torch::optim::AdamWOptions());
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<AdamWParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_RMSprop) {
auto options = RMSpropOptions(0.1).momentum(0.9).centered(true);
test_serialize_optimizer<RMSprop, RMSpropOptions, RMSpropParamState>(options);
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have a momentum
// buffer entry
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 = torch::optim::RMSprop(model1_params, options);
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<at::Tensor> square_average_buffers;
std::vector<at::Tensor> momentum_buffers;
std::vector<at::Tensor> grad_average_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto i : c10::irange(params_.size())) {
if (i != (params_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
const RMSpropParamState& curr_state_ =
static_cast<const RMSpropParamState&>(*(optim1_state.at(key_).get()));
square_average_buffers.emplace_back(curr_state_.square_avg());
if (curr_state_.momentum_buffer().defined()) {
momentum_buffers.emplace_back(curr_state_.momentum_buffer());
}
if (curr_state_.grad_avg().defined()) {
grad_average_buffers.emplace_back(curr_state_.grad_avg());
}
}
}
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(
output_archive, "square_average_buffers", square_average_buffers);
write_tensors_to_archive(
output_archive, "momentum_buffers", momentum_buffers);
write_tensors_to_archive(
output_archive, "grad_average_buffers", grad_average_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = RMSprop(model1_params, options);
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
const auto& params1_2_ = optim1_2.param_groups()[0].params();
auto& optim1_2_state = optim1_2.state();
// old RMSprop didn't track step value
for (const auto i : c10::irange(params1_2_.size())) {
if (i != (params1_2_.size() - 1)) {
auto key_ = c10::guts::to_string(params_[i].unsafeGetTensorImpl());
auto key1_2_ = c10::guts::to_string(params1_2_[i].unsafeGetTensorImpl());
const RMSpropParamState& curr_state_ =
static_cast<const RMSpropParamState&>(*(optim1_state.at(key_).get()));
RMSpropParamState& curr_state1_2_ =
static_cast<RMSpropParamState&>(*(optim1_2_state.at(key_).get()));
curr_state1_2_.step(curr_state_.step());
}
}
is_optimizer_state_equal<RMSpropParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_LBFGS) {
test_serialize_optimizer<LBFGS, LBFGSOptions, LBFGSParamState>(
LBFGSOptions(), true);
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have entry in
// buffers
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 =
torch::optim::LBFGS(model1_params, torch::optim::LBFGSOptions());
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
auto closure = []() { return torch::tensor({10}); };
optimizer.step(closure);
};
step(optim1, model1);
at::Tensor d, t, H_diag, prev_flat_grad, prev_loss;
std::deque<at::Tensor> old_dirs, old_stps;
const auto& params_ = optim1.param_groups()[0].params();
auto key_ = c10::guts::to_string(params_[0].unsafeGetTensorImpl());
const auto& optim1_state =
static_cast<const LBFGSParamState&>(*(optim1.state().at(key_).get()));
d = optim1_state.d();
t = at::tensor(optim1_state.t());
H_diag = optim1_state.H_diag();
prev_flat_grad = optim1_state.prev_flat_grad();
prev_loss = at::tensor(optim1_state.prev_loss());
old_dirs = optim1_state.old_dirs();
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
output_archive.write("d", d, /*is_buffer=*/true);
output_archive.write("t", t, /*is_buffer=*/true);
output_archive.write("H_diag", H_diag, /*is_buffer=*/true);
output_archive.write("prev_flat_grad", prev_flat_grad, /*is_buffer=*/true);
output_archive.write("prev_loss", prev_loss, /*is_buffer=*/true);
write_tensors_to_archive(output_archive, "old_dirs", old_dirs);
write_tensors_to_archive(output_archive, "old_stps", old_stps);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = LBFGS(model1_params, torch::optim::LBFGSOptions());
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
const auto& params1_2_ = optim1_2.param_groups()[0].params();
auto param_key = c10::guts::to_string(params1_2_[0].unsafeGetTensorImpl());
auto& optim1_2_state =
static_cast<LBFGSParamState&>(*(optim1_2.state().at(param_key).get()));
// old LBFGS didn't track func_evals, n_iter, ro, al values
optim1_2_state.func_evals(optim1_state.func_evals());
optim1_2_state.n_iter(optim1_state.n_iter());
optim1_2_state.ro(optim1_state.ro());
optim1_2_state.al(optim1_state.al());
is_optimizer_state_equal<LBFGSParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, XOR_CUDA) {
torch::manual_seed(0);
// We better be able to save and load a XOR model!
auto getLoss = [](Sequential model,
uint32_t batch_size,
bool is_cuda = false) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
if (is_cuda) {
inputs = inputs.cuda();
labels = labels.cuda();
}
for (const auto i : c10::irange(batch_size)) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
ASSERT_LT(epoch, 3000);
epoch++;
}
auto tempfile = c10::make_tempfile();
torch::save(model, tempfile.name);
torch::load(model2, tempfile.name);
auto loss = getLoss(model2, 100);
ASSERT_LT(loss.item<float>(), 0.1);
model2->to(torch::kCUDA);
loss = getLoss(model2, 100, true);
ASSERT_LT(loss.item<float>(), 0.1);
auto tempfile2 = c10::make_tempfile();
torch::save(model2, tempfile2.name);
torch::load(model3, tempfile2.name);
loss = getLoss(model3, 100, true);
ASSERT_LT(loss.item<float>(), 0.1);
}
TEST(
SerializeTest,
CanSerializeModulesWithIntermediateModulesWithoutParametersOrBuffers) {
struct C : torch::nn::Module {
C() {
register_buffer("foo", torch::ones(5, torch::kInt32));
}
};
struct B : torch::nn::Module {};
struct A : torch::nn::Module {
A() {
register_module("b", std::make_shared<B>());
register_module("c", std::make_shared<C>());
}
};
struct M : torch::nn::Module {
M() {
register_module("a", std::make_shared<A>());
}
};
auto out = std::make_shared<M>();
std::stringstream ss;
torch::save(out, ss);
auto in = std::make_shared<M>();
torch::load(in, ss);
const int output = in->named_buffers()["a.c.foo"].sum().item<int>();
ASSERT_EQ(output, 5);
}
TEST(SerializeTest, VectorOfTensors) {
torch::manual_seed(0);
std::vector<torch::Tensor> x_vec = {
torch::randn({1, 2}), torch::randn({3, 4})};
std::stringstream stream;
torch::save(x_vec, stream);
std::vector<torch::Tensor> y_vec;
torch::load(y_vec, stream);
for (const auto i : c10::irange(x_vec.size())) {
auto& x = x_vec[i];
auto& y = y_vec[i];
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
}
TEST(SerializeTest, IValue) {
c10::IValue ivalue(1);
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
output_archive.write("value", ivalue);
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
c10::IValue ivalue_out;
input_archive.read("value", ivalue_out);
ASSERT_EQ(ivalue_out.toInt(), 1);
ASSERT_THROWS_WITH(
input_archive.read("bad_key", ivalue_out),
"does not have a field with name");
}
// NOTE: if a `Module` contains unserializable submodules (e.g.
// `nn::Functional`), we expect those submodules to be skipped when the `Module`
// is being serialized.
TEST(SerializeTest, UnserializableSubmoduleIsSkippedWhenSavingModule) {
struct A : torch::nn::Module {
A() {
register_module("relu", torch::nn::Functional(torch::relu));
}
};
auto out = std::make_shared<A>();
std::stringstream ss;
torch::save(out, ss);
torch::serialize::InputArchive archive;
archive.load_from(ss);
torch::serialize::InputArchive relu_archive;
// Submodule with name "relu" should not exist in the `InputArchive`,
// because the "relu" submodule is an `nn::Functional` and is not
// serializable.
ASSERT_FALSE(archive.try_read("relu", relu_archive));
}
// NOTE: If a `Module` contains unserializable submodules (e.g.
// `nn::Functional`), we don't check the existence of those submodules in the
// `InputArchive` when deserializing.
TEST(SerializeTest, UnserializableSubmoduleIsIgnoredWhenLoadingModule) {
struct B : torch::nn::Module {
B() {
register_module("relu1", torch::nn::Functional(torch::relu));
register_buffer("foo", torch::zeros(5, torch::kInt32));
}
};
struct A : torch::nn::Module {
A() {
register_module("b", std::make_shared<B>());
register_module("relu2", torch::nn::Functional(torch::relu));
}
};
auto out = std::make_shared<A>();
// Manually change the values of "b.foo", so that we can check whether the
// buffer contains these values after deserialization.
out->named_buffers()["b.foo"].fill_(1);
auto tempfile = c10::make_tempfile();
torch::save(out, tempfile.name);
torch::serialize::InputArchive archive;
archive.load_from(tempfile.name);
torch::serialize::InputArchive archive_b;
torch::serialize::InputArchive archive_relu;
torch::Tensor tensor_foo;
ASSERT_TRUE(archive.try_read("b", archive_b));
ASSERT_TRUE(archive_b.try_read("foo", tensor_foo, /*is_buffer=*/true));
// Submodule with name "relu1" should not exist in `archive_b`, because the
// "relu1" submodule is an `nn::Functional` and is not serializable.
ASSERT_FALSE(archive_b.try_read("relu1", archive_relu));
// Submodule with name "relu2" should not exist in `archive`, because the
// "relu2" submodule is an `nn::Functional` and is not serializable.
ASSERT_FALSE(archive.try_read("relu2", archive_relu));
auto in = std::make_shared<A>();
// `torch::load(...)` works without error, even though `A` contains the
// `nn::Functional` submodules while the serialized file doesn't, because the
// `nn::Functional` submodules are not serializable and thus ignored when
// deserializing.
torch::load(in, tempfile.name);
// Check that the "b.foo" buffer is correctly deserialized from the file.
const int output = in->named_buffers()["b.foo"].sum().item<int>();
// `output` should equal to the sum of the values we manually assigned to
// "b.foo" before serialization.
ASSERT_EQ(output, 5);
}
|