File: tensor_options_cuda.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (82 lines) | stat: -rw-r--r-- 2,964 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <gtest/gtest.h>

#include <torch/torch.h>

#include <torch/cuda.h>

// NB: This file is compiled even in CPU build (for some reason), so
// make sure you don't include any CUDA only headers.

using namespace at;

// TODO: This might be generally helpful aliases elsewhere.
at::Device CPUDevice() {
  return at::Device(at::kCPU);
}
at::Device CUDADevice(DeviceIndex index) {
  return at::Device(at::kCUDA, index);
}

// A macro so we don't lose location information when an assertion fails.
#define REQUIRE_OPTIONS(device_, index_, type_, layout_)                  \
  ASSERT_EQ(options.device().type(), Device((device_), (index_)).type()); \
  ASSERT_TRUE(                                                            \
      options.device().index() == Device((device_), (index_)).index());   \
  ASSERT_EQ(typeMetaToScalarType(options.dtype()), (type_));              \
  ASSERT_TRUE(options.layout() == (layout_))

#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_)            \
  ASSERT_EQ(tensor.device().type(), Device((device_), (index_)).type());   \
  ASSERT_EQ(tensor.device().index(), Device((device_), (index_)).index()); \
  ASSERT_EQ(tensor.scalar_type(), (type_));                                \
  ASSERT_TRUE(tensor.options().layout() == (layout_))

TEST(TensorOptionsTest, ConstructsWellFromCUDATypes_CUDA) {
  auto options = CUDA(kFloat).options();
  REQUIRE_OPTIONS(kCUDA, -1, kFloat, kStrided);

  options = CUDA(kInt).options();
  REQUIRE_OPTIONS(kCUDA, -1, kInt, kStrided);

  options = getDeprecatedTypeProperties(Backend::SparseCUDA, kFloat).options();
  REQUIRE_OPTIONS(kCUDA, -1, kFloat, kSparse);

  options = getDeprecatedTypeProperties(Backend::SparseCUDA, kByte).options();
  REQUIRE_OPTIONS(kCUDA, -1, kByte, kSparse);

  // NOLINTNEXTLINE(bugprone-argument-comment,cppcoreguidelines-avoid-magic-numbers)
  options = CUDA(kFloat).options(/*device=*/5);
  REQUIRE_OPTIONS(kCUDA, 5, kFloat, kStrided);

  options =
      // NOLINTNEXTLINE(bugprone-argument-comment,cppcoreguidelines-avoid-magic-numbers)
      getDeprecatedTypeProperties(Backend::SparseCUDA, kFloat)
          .options(/*device=*/5);
  REQUIRE_OPTIONS(kCUDA, 5, kFloat, kSparse);
}

TEST(TensorOptionsTest, ConstructsWellFromCUDATensors_MultiCUDA) {
  auto options = empty(5, device(kCUDA).dtype(kDouble)).options();
  REQUIRE_OPTIONS(kCUDA, 0, kDouble, kStrided);

  options = empty(5, getDeprecatedTypeProperties(Backend::SparseCUDA, kByte))
                .options();
  REQUIRE_OPTIONS(kCUDA, 0, kByte, kSparse);

  if (torch::cuda::device_count() > 1) {
    Tensor tensor;
    {
      DeviceGuard guard(CUDADevice(1));
      tensor = empty(5, device(kCUDA));
    }
    options = tensor.options();
    REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);

    {
      DeviceGuard guard(CUDADevice(1));
      tensor = empty(5, device(kCUDA).layout(kSparse));
    }
    options = tensor.options();
    REQUIRE_OPTIONS(kCUDA, 1, kFloat, kSparse);
  }
}