1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/irange.h>
#include <ATen/cuda/CUDAContext.h>
#include <gtest/gtest.h>
#include <torch/csrc/distributed/c10d/FileStore.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#include "CUDATest.hpp"
#include "TestUtils.hpp"
using namespace c10d::test;
using at::cuda::CUDAStream;
template <typename T, typename... Args>
std::vector<T> initialize(const std::string& path, int N, Args&&... args) {
std::vector<T> tests;
for (C10_UNUSED const auto i : c10::irange(N)) {
tests.push_back(std::move(T(path, std::forward<Args>(args)...)));
}
std::vector<std::thread> threads;
for (C10_UNUSED const auto i : c10::irange(N)) {
threads.push_back(std::thread([i, N, &tests] { tests[i].start(i, N); }));
}
for (auto& thread : threads) {
thread.join();
}
return tests;
}
class AsyncTest {
public:
AsyncTest(std::string path) : path_(std::move(path)) {}
AsyncTest(AsyncTest&& other) {
path_ = std::move(other.path_);
pg_ = std::move(other.pg_);
}
::c10d::ProcessGroupGloo& getProcessGroup() {
return *pg_;
}
void start(int rank, int size) {
auto store = c10::make_intrusive<::c10d::FileStore>(path_, size);
// Use tiny timeout to make this test run fast
auto options = ::c10d::ProcessGroupGloo::Options::create();
options->timeout = std::chrono::milliseconds(50);
options->devices.push_back(
::c10d::ProcessGroupGloo::createDeviceForHostname("127.0.0.1"));
pg_ = std::unique_ptr<::c10d::ProcessGroupGloo>(
new ::c10d::ProcessGroupGloo(store, rank, size, options));
}
protected:
std::string path_;
std::unique_ptr<::c10d::ProcessGroupGloo> pg_;
};
class AsyncInputIsOutputTest : public AsyncTest {
public:
AsyncInputIsOutputTest(const std::string& path, int numTensors)
: AsyncTest(path),
numTensors_(numTensors),
numDevices_(cudaNumDevices()) {
// Allocate inputs on available devices in a round robin fashion.
::at::globalContext().lazyInitCUDA();
inputs_.resize(numTensors_);
for (const auto i : c10::irange(numTensors_)) {
inputs_[i] = at::empty(
{16, 16},
at::device(
{at::kCUDA, static_cast<c10::DeviceIndex>(i % numDevices_)}));
}
// Allocate a stream per device.
//
// The "current stream" is set globally per device in THC, so we
// can't make two tensors on the same device use different streams
// and pass this along to the collective (since it uses the THC
// getters to retrieve the current stream).
//
at::cuda::OptionalCUDAGuard deviceGuard;
streams_.reserve(numDevices_);
for (const auto i : c10::irange(numDevices_)) {
deviceGuard.set_index(i);
streams_.push_back(at::cuda::getStreamFromPool());
}
}
void wait(c10::intrusive_ptr<c10d::Work>& work) {
c10::cuda::CUDAMultiStreamGuard guard(streams_);
work->wait();
}
std::vector<at::Tensor> getCpuTensors(
const std::vector<at::Tensor>& gpu_tensors) {
std::vector<at::Tensor> outputs(gpu_tensors.size());
// For the duration of this function, make THC use our streams
c10::cuda::CUDAMultiStreamGuard guard(streams_);
// Copy inputs to outputs
for (unsigned i = 0; i < gpu_tensors.size(); i++) {
outputs[i] = gpu_tensors[i].cpu();
}
return outputs;
}
std::vector<at::Tensor> getTensors() {
return getCpuTensors(inputs_);
}
protected:
const int numTensors_;
const int numDevices_;
std::vector<at::Tensor> inputs_;
std::vector<CUDAStream> streams_;
};
class AsyncAllreduceTest : public AsyncInputIsOutputTest {
public:
AsyncAllreduceTest(const std::string& path, int numTensors)
: AsyncInputIsOutputTest(path, numTensors) {}
c10::intrusive_ptr<c10d::Work> run() {
// For the duration of this function, make THC use our streams
c10::cuda::CUDAMultiStreamGuard guard(streams_);
// Launch sleep on every stream
at::cuda::OptionalCUDAGuard deviceGuard;
for (const auto i : c10::irange(numDevices_)) {
deviceGuard.set_index(i);
cudaSleep(streams_[i], 10 * 1000 * 1000);
}
// Launch value initialization for every tensor
for (const auto i : c10::irange(numTensors_)) {
deviceGuard.set_index(i % numDevices_);
inputs_[i].fill_(pg_->getRank() * numTensors_ + i);
}
return pg_->allreduce(inputs_);
}
};
class AsyncBroadcastTest : public AsyncInputIsOutputTest {
public:
AsyncBroadcastTest(const std::string& path, int numTensors)
: AsyncInputIsOutputTest(path, numTensors) {}
c10::intrusive_ptr<c10d::Work> run(int rootRank, int rootTensor) {
// For the duration of this function, make THC use our streams
c10::cuda::CUDAMultiStreamGuard guard(streams_);
// Launch sleep on every stream
at::cuda::OptionalCUDAGuard deviceGuard;
for (const auto i : c10::irange(numDevices_)) {
deviceGuard.set_index(i);
cudaSleep(streams_[i], 10 * 1000 * 1000);
}
// Launch value initialization for every tensor
for (const auto i : c10::irange(numTensors_)) {
deviceGuard.set_index(i % numDevices_);
inputs_[i].fill_(pg_->getRank() * numTensors_ + i);
}
::c10d::BroadcastOptions options;
options.rootRank = rootRank;
options.rootTensor = rootTensor;
return pg_->broadcast(inputs_, options);
}
};
void runAsyncAllreduceTest(
const std::string& path,
size_t numProcesses = 4,
size_t numTensors = 2) {
auto tests = initialize<AsyncAllreduceTest>(path, numProcesses, numTensors);
std::vector<c10::intrusive_ptr<c10d::Work>> work(numProcesses);
for (const auto i : c10::irange(numProcesses)) {
work[i] = tests[i].run();
}
// Wait for work to complete
for (const auto i : c10::irange(numProcesses)) {
tests[i].wait(work[i]);
}
// Check results
for (const auto i : c10::irange(numProcesses)) {
const auto size = numProcesses * numTensors;
const auto expected = (size * (size - 1)) / 2;
auto tensors = tests[i].getTensors();
auto results = tests[i].getCpuTensors(work[i]->result());
EXPECT_EQ(tensors.size(), results.size());
for (const auto j : c10::irange(tensors.size())) {
auto& tensor = tensors[j];
auto data = tensor.data_ptr<float>();
auto& result_tensor = results[j];
auto result_data = result_tensor.data_ptr<float>();
EXPECT_EQ(tensor.numel(), result_tensor.numel());
for (const auto k : c10::irange(tensor.numel())) {
EXPECT_EQ(data[k], expected);
EXPECT_EQ(result_data[k], expected);
}
}
}
}
void runAsyncBroadcastTest(
const std::string& path,
size_t numProcesses = 4,
size_t numTensors = 1) {
auto tests = initialize<AsyncBroadcastTest>(path, numProcesses, numTensors);
// Try every permutation of root rank and root tensor
for (const auto rootRank : c10::irange(numProcesses)) {
for (const auto rootTensor : c10::irange(numTensors)) {
std::vector<c10::intrusive_ptr<c10d::Work>> work(numProcesses);
for (const auto i : c10::irange(numProcesses)) {
work[i] = tests[i].run(rootRank, rootTensor);
}
// Wait for work to complete
for (const auto i : c10::irange(numProcesses)) {
tests[i].wait(work[i]);
}
// Check results
const auto expected = (rootRank * numTensors + rootTensor);
for (const auto i : c10::irange(numProcesses)) {
auto tensors = tests[i].getTensors();
for (const auto& tensor : tensors) {
const auto* const data = tensor.data_ptr<float>();
for (const auto k : c10::irange(tensor.numel())) {
EXPECT_EQ(data[k], expected);
}
}
}
}
}
}
#ifdef USE_CUDA
TEST(ProcessGroupGlooAsyncTest, testAsyncAllreduce) {
if (!at::cuda::is_available()) {
LOG(INFO) << "CUDA not available, skipping testAsyncAllreduce";
return;
}
TemporaryFile file;
runAsyncAllreduceTest(file.path);
}
TEST(ProcessGroupGlooAsyncTest, testAsyncBroadcast) {
if (!at::cuda::is_available()) {
LOG(INFO) << "CUDA not available, skipping testAsyncBroadcast";
return;
}
TemporaryFile file;
runAsyncBroadcastTest(file.path);
}
#endif
|