1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#include <gtest/gtest.h>
#include <torch/csrc/jit/api/function_impl.h>
#include <torch/csrc/jit/runtime/argument_spec.h>
#include <torch/jit.h>
#include "test/cpp/jit/test_utils.h"
namespace torch {
namespace jit {
namespace {
at::Device device(const autograd::Variable& v) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return v.device();
}
bool isEqual(at::IntArrayRef lhs, at::IntArrayRef rhs) {
return lhs.size() == rhs.size() &&
std::equal(lhs.begin(), lhs.end(), rhs.begin());
}
bool isEqual(const CompleteArgumentInfo& ti, const autograd::Variable& v) {
if (!ti.defined())
return ti.defined() == v.defined();
return ti.device() == device(v) && ti.requires_grad() == v.requires_grad() &&
ti.type() == v.scalar_type() && isEqual(ti.sizes(), v.sizes()) &&
isEqual(ti.strides(), v.strides());
}
bool isEqual(const ArgumentInfo& ti, const autograd::Variable& v) {
if (!ti.defined())
return ti.defined() == v.defined();
return ti.device() == device(v) && ti.requires_grad() == v.requires_grad() &&
ti.type() == v.scalar_type() && ti.dim() == v.dim();
}
autograd::Variable var(
at::TensorOptions t,
at::IntArrayRef sizes,
bool requires_grad) {
return autograd::make_variable(at::rand(sizes, t), requires_grad);
}
autograd::Variable undef() {
return autograd::Variable();
}
} // namespace
TEST(ArgumentSpecTest, CompleteArgumentSpec_CUDA) {
auto const CF = at::CPU(at::kFloat);
auto const CD = at::CPU(at::kDouble);
auto const GF = at::CUDA(at::kFloat);
auto const GD = at::CUDA(at::kDouble);
auto list = createStack(
{var(CF, {1}, true),
var(CD, {1, 2}, false),
var(GF, {}, true),
var(GD, {4, 5, 6}, false),
undef()});
// make sure we have some non-standard strides
list[1].toTensor().transpose_(0, 1);
// same list but different backing values
auto list2 = createStack(
{var(CF, {1}, true),
var(CD, {1, 2}, false),
var(GF, {}, true),
var(GD, {4, 5, 6}, false),
undef()});
list2[1].toTensor().transpose_(0, 1);
CompleteArgumentSpec a(true, list);
CompleteArgumentSpec b(true, list);
ASSERT_EQ(a.hashCode(), b.hashCode());
ASSERT_EQ(a, b);
CompleteArgumentSpec d(true, list2);
ASSERT_EQ(d, a);
ASSERT_EQ(d.hashCode(), a.hashCode());
for (size_t i = 0; i < list.size(); ++i) {
ASSERT_TRUE(isEqual(a.at(i), list[i].toTensor()));
}
CompleteArgumentSpec no_grad(/*with_grad=*/false, list);
ASSERT_TRUE(no_grad != a);
std::unordered_set<CompleteArgumentSpec> spec;
spec.insert(a); // we use a below, so no move
ASSERT_TRUE(spec.count(b) > 0);
ASSERT_EQ(spec.count(no_grad), 0);
spec.insert(std::move(no_grad));
ASSERT_EQ(spec.count(CompleteArgumentSpec(true, list)), 1);
list2[1].toTensor().transpose_(0, 1);
CompleteArgumentSpec c(true, list2); // same as list, except for one stride
ASSERT_FALSE(c == a);
ASSERT_EQ(spec.count(c), 0);
Stack stack = {var(CF, {1, 2}, true), 3, var(CF, {1, 2}, true)};
CompleteArgumentSpec with_const(true, stack);
ASSERT_EQ(with_const.at(2).sizes().size(), 2);
}
// TODO: this test was disabled for unknown reasons and doesn't run.
// static size_t hashCode(const TensorTypePtr& ptr) {
// return std::hash<TensorType>()(*ptr.get());
// }
// TEST(ArgumentSpecTest, VaryingShape) {
// c10::VaryingShape<int64_t> vs(c10::optional<size_t>{});
// auto ptt_empty1 = TensorType::create({}, {}, vs, vs, false);
// auto ptt_empty2 = TensorType::create({}, {}, vs, vs, false);
// ASSERT_EQ(hashCode(ptt_empty1), hashCode(ptt_empty2));
// c10::VaryingShape<int64_t> vs22(std::vector<int64_t>{2, 2});
// auto ptt_vs22_vs22_1 = TensorType::create({}, {}, vs22, vs22, false);
// auto ptt_vs22_vs22_2 = TensorType::create({}, {}, vs22, vs22, false);
// ASSERT_EQ(hashCode(ptt_vs22_vs22_1), hashCode(ptt_vs22_vs22_2));
// c10::VaryingShape<int64_t> vs23(std::vector<int64_t>{2, 3});
// auto ptt_vs22_vs23_2 = TensorType::create({}, {}, vs22, vs23, false);
// ASSERT_NE(hashCode(ptt_vs22_vs22_1), hashCode(ptt_vs22_vs23_2));
// auto ptt_vs22_vs22_1_true = TensorType::create({}, {}, vs22, vs22, true);
// auto ptt_vs22_vs22_2_true = TensorType::create({}, {}, vs22, vs22, true);
// ASSERT_EQ(hashCode(ptt_vs22_vs22_1_true), hashCode(ptt_vs22_vs22_2_true));
// auto ptt_vs22_vs22_1_false = TensorType::create({}, {}, vs22, vs22, false);
// ASSERT_NE(hashCode(ptt_vs22_vs22_1_true), hashCode(ptt_vs22_vs22_1_false));
// }
TEST(ArgumentSpecTest, Basic_CUDA) {
auto& CF = at::CPU(at::kFloat);
auto& CD = at::CPU(at::kDouble);
auto& GF = at::CUDA(at::kFloat);
auto& GD = at::CUDA(at::kDouble);
auto graph = toGraphFunction(jit::compile(R"JIT(
def fn(a, b, c, d, e):
return a, b, c, d, e
)JIT")
->get_function("fn"))
.graph();
ArgumentSpecCreator arg_spec_creator(*graph);
auto list = createStack(
{var(CF, {1}, true),
var(CD, {1, 2}, false),
var(GF, {}, true),
var(GD, {4, 5, 6}, false),
undef()});
// make sure we have some non-standard strides
list[1].toTensor().transpose_(0, 1);
// same list but different backing values
auto list2 = createStack(
{var(CF, {1}, true),
var(CD, {1, 2}, false),
var(GF, {}, true),
var(GD, {4, 5, 6}, false),
undef()});
list2[1].toTensor().transpose_(0, 1);
ArgumentSpec a = arg_spec_creator.create(true, list);
ArgumentSpec b = arg_spec_creator.create(true, list);
ASSERT_EQ(a.hashCode(), b.hashCode());
ASSERT_EQ(a, b);
ArgumentSpec d = arg_spec_creator.create(true, list2);
ASSERT_EQ(d, a);
ASSERT_EQ(d.hashCode(), a.hashCode());
for (size_t i = 0; i < list.size(); ++i) {
ASSERT_TRUE(isEqual(a.tensorAt(i), list[i].toTensor()));
}
ArgumentSpec no_grad = arg_spec_creator.create(/*with_grad=*/false, list);
ASSERT_TRUE(no_grad != a);
std::unordered_set<ArgumentSpec> spec;
spec.insert(a); // we still need a for the test below
ASSERT_TRUE(spec.count(b) > 0);
ASSERT_EQ(spec.count(no_grad), 0);
spec.insert(std::move(no_grad));
ASSERT_EQ(spec.count(arg_spec_creator.create(true, list)), 1);
list2[1].toTensor().transpose_(0, 1);
ArgumentSpec c = arg_spec_creator.create(
true, list2); // same as list, except for one stride, used to be
// different, now the same
ASSERT_TRUE(c == a);
ASSERT_EQ(spec.count(c), 1);
}
} // namespace jit
} // namespace torch
|