1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <ATen/Parallel.h>
#include <c10/core/DeviceType.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/jit.h>
#include <torch/script.h>
#include <torch/torch.h>
namespace torch {
namespace jit {
class TypeCheckTest : public ::testing::Test {
protected:
TypeCheckTest() : interp(makeInterp()) {}
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
InterpreterState interp;
private:
static InterpreterState makeInterp() {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%a.1 : Tensor,
%b.1 : Tensor):
%t0 : Float(2, 2, strides=[2, 1], device=cpu, requires_grad=1), %t1 : Float(3, 3, strides=[3, 1]), %type_matched : bool = prim::TypeCheck[types=[Float(2, 2, strides=[2, 1], device=cpu, requires_grad=1), Float(3, 3, strides=[3, 1])]](%a.1, %b.1)
return (%t0, %t1, %type_matched)
)IR",
&*graph,
vmap);
Code function(graph, "");
return InterpreterState(function);
}
};
TEST_F(TypeCheckTest, MatchingType) {
// TypeCheck yields to true! Shape, grad and device matches.
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_TRUE(exactlyEqual(stack[0].toTensor(), a));
ASSERT_TRUE(exactlyEqual(stack[1].toTensor(), b));
ASSERT_TRUE(stack[2].toBool());
}
TEST_F(TypeCheckTest, SizeMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({2, 2}, at::kFloat); // Size mismatch
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, GradientMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a = a.to(at::kCPU);
a.set_requires_grad(false); // Gradient mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, ScalarTypeMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a = a.to(at::kCPU);
a.set_requires_grad(true);
a = a.to(at::kInt); // Scalar type mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, DeviceMismatch_CUDA) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCUDA); // Device mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
// TODO: These tests weren't doing anything.
// TEST(TypeCheckErrorTest, EmptyCheckRaises) {
// // Test empty Typecheck raises an internal assertion
// auto graph = std::make_shared<Graph>();
// std::unordered_map<std::string, Value*> vmap;
// EXPECT_ANY_THROW(parseIR(
// R"IR(
// graph(%a.1 : Tensor,
// %b.1 : Tensor):
// %type_matched : bool = prim::TypeCheck()
// return (%type_matched)
// )IR",
// &*graph,
// vmap));
// }
// TODO: These tests weren't doing anything.
// TEST(TypeCheckErrorTest, WrongInputOutputCountRaises) {
// // Test for assertion if num_inputs + 1 != num_outputs
// auto graph = std::make_shared<Graph>();
// std::unordered_map<std::string, Value*> vmap;
// EXPECT_ANY_THROW(parseIR(
// R"IR(
// graph(%a.1 : Tensor,
// %b.1 : Tensor):
// %type_matched : bool = prim::TypeCheck(%a.1)
// return (%type_matched)
// )IR",
// &*graph,
// vmap));
// }
TEST(InterpreterTest, Basic_CUDA) {
constexpr int batch_size = 4;
constexpr int input_size = 256;
constexpr int seq_len = 32;
int hidden_size = 2 * input_size;
auto input = at::randn({seq_len, batch_size, input_size}, at::kCUDA);
auto hx = at::randn({batch_size, hidden_size}, at::kCUDA);
auto cx = at::randn({batch_size, hidden_size}, at::kCUDA);
auto w_ih = t_def(at::randn({4 * hidden_size, input_size}, at::kCUDA));
auto w_hh = t_def(at::randn({4 * hidden_size, hidden_size}, at::kCUDA));
auto lstm_g = build_lstm();
Code lstm_function(lstm_g, "");
InterpreterState lstm_interp(lstm_function);
auto outputs = run(lstm_interp, {input[0], hx, cx, w_ih, w_hh});
std::tie(hx, cx) = lstm(input[0], hx, cx, w_ih, w_hh);
ASSERT_TRUE(exactlyEqual(outputs[0], hx));
ASSERT_TRUE(exactlyEqual(outputs[1], cx));
}
TEST(InterpreterTest, IgnorableArgsInSchema) {
auto graph = build_mobile_export_analysis_graph();
MobileCode function(graph, "");
auto op_to_specified_args = function.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args.size() == 2);
ASSERT_TRUE(op_to_specified_args["aten::slice.Tensor"] == 4);
ASSERT_TRUE(op_to_specified_args["aten::slice.str"] == 4);
auto graph_vararg = build_mobile_export_analysis_graph_with_vararg();
MobileCode function_vararg(graph_vararg, "");
auto op_to_specified_args_vararg = function_vararg.op_to_num_specified_args();
// should never register it
ASSERT_TRUE(
op_to_specified_args_vararg.find("prim::tolist") ==
op_to_specified_args_vararg.end());
auto graph_nested = build_mobile_export_analysis_graph_nested();
MobileCode function_nested(graph_nested, "");
auto op_to_specified_args_nested = function_nested.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args_nested["aten::slice.Tensor"] == 4);
ASSERT_TRUE(op_to_specified_args_nested["aten::slice.str"] == 4);
auto graph_non_const = build_mobile_export_analysis_graph_non_const();
MobileCode function_non_const(graph_non_const, "");
auto op_to_specified_args_non_const =
function_non_const.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args_non_const["aten::conv2d"] == 6);
}
TEST(InterpreterTest, IgnorableArgsInSchemaWithOut) {
auto graph = build_mobile_export_with_out();
MobileCode function(graph, "");
auto op_to_specified_args = function.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args.size() == 1);
// this should be 3 when the add_out flag is set to True
ASSERT_TRUE(op_to_specified_args["aten::add.out"] == 3);
}
TEST(InterpreterTest, runAsyncBasicTest) {
/*
TODO: there are some problem with C++ parsing script program involving
fork. Use the test module below for now.
issue about this: github.com/pytorch/pytorch/issues/46368
The test module file is generated by following:
class DemoModule(torch.nn.Module):
def forward(self):
r1 = torch.jit.fork(torch.mm, torch.rand(100,100),torch.rand(100,100))
r2 = torch.jit.fork(torch.mm, torch.rand(100,100),torch.rand(100,100))
return r1.wait() + r2.wait()
demo = DemoModule()
torch.jit.save(torch.jit.script(demo), 'test_interpreter_async.pt')
*/
std::string filePath(__FILE__);
auto testModelFile = filePath.substr(0, filePath.find_last_of("/\\") + 1);
testModelFile.append("test_interpreter_async.pt");
auto model = load(testModelFile);
auto graph = model.get_method("forward").graph();
Code function(graph, "");
auto asyncCounter = 0;
std::mutex mtx;
// a dummy executor which actually use at::launch, but add up a counter
auto launcher = [&](std::function<void()> f) {
mtx.lock();
++asyncCounter;
mtx.unlock();
at::launch(f);
};
std::vector<IValue> stack;
// NOLINTNEXTLINE(modernize-use-emplace)
stack.push_back(model._ivalue());
InterpreterState interp(function, launcher);
interp.runAsync(stack)->wait();
ASSERT_TRUE(asyncCounter > 0);
}
TEST(
EnableRethrowCaughtExceptionTest,
EnableRethrowCaughtExceptionTestRethrowsCaughtException) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : int = prim::Constant[value=2]()
%3 : Tensor = aten::add(%0, %1, %2)
return (%3)
)IR",
&*graph,
vmap);
Code function(graph, "");
InterpreterState interp = InterpreterState(function);
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({2, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
bool original_flag_value = FLAGS_torch_jit_enable_rethrow_caught_exception;
bool exception_handled = false;
try {
FLAGS_torch_jit_enable_rethrow_caught_exception = false;
interp.run(stack);
} catch (std::runtime_error& e) {
exception_handled = true;
std::string exception_msg = e.what();
EXPECT_THAT(
exception_msg,
::testing::HasSubstr("%3 : Tensor = aten::add(%0, %1, %2)"));
EXPECT_THAT(
exception_msg,
::testing::HasSubstr(
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1"));
}
EXPECT_TRUE(exception_handled);
exception_handled = false;
try {
FLAGS_torch_jit_enable_rethrow_caught_exception = true;
interp.run(stack);
} catch (c10::Error& e) {
exception_handled = true;
std::string exception_msg = e.what_without_backtrace();
EXPECT_STREQ(
exception_msg.c_str(),
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1");
}
EXPECT_TRUE(exception_handled);
FLAGS_torch_jit_enable_rethrow_caught_exception = true;
c10::intrusive_ptr<Future> future = interp.runAsync(stack);
future->wait();
ASSERT_TRUE(future->completed());
ASSERT_TRUE(future->hasError());
try {
std::rethrow_exception(future->exception_ptr());
} catch (c10::Error& e) {
std::string exception_msg = e.what_without_backtrace();
EXPECT_STREQ(
exception_msg.c_str(),
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1");
}
FLAGS_torch_jit_enable_rethrow_caught_exception = original_flag_value;
}
} // namespace jit
} // namespace torch
|