1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
#include <gtest/gtest.h>
#include <c10/core/TensorOptions.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/import_data.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/train/export_data.h>
#include <torch/csrc/jit/mobile/train/optim/sgd.h>
#include <torch/csrc/jit/mobile/train/random.h>
#include <torch/csrc/jit/mobile/train/sequential.h>
#include <torch/csrc/jit/serialization/flatbuffer_serializer_jit.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/data/dataloader.h>
#include <torch/torch.h>
// Tests go in torch::jit
namespace torch {
namespace jit {
TEST(LiteTrainerTest, Params) {
Module m("m");
m.register_parameter("foo", torch::ones({1}, at::requires_grad()), false);
m.define(R"(
def forward(self, x):
b = 1.0
return self.foo * x + b
)");
double learning_rate = 0.1, momentum = 0.1;
int n_epoc = 10;
// init: y = x + 1;
// target: y = 2 x + 1
std::vector<std::pair<Tensor, Tensor>> trainData{
{1 * torch::ones({1}), 3 * torch::ones({1})},
};
// Reference: Full jit
std::stringstream ms;
m.save(ms);
auto mm = load(ms);
// mm.train();
std::vector<::at::Tensor> parameters;
for (auto parameter : mm.parameters()) {
parameters.emplace_back(parameter);
}
::torch::optim::SGD optimizer(
parameters, ::torch::optim::SGDOptions(learning_rate).momentum(momentum));
for (int epoc = 0; epoc < n_epoc; ++epoc) {
for (auto& data : trainData) {
auto source = data.first, targets = data.second;
optimizer.zero_grad();
std::vector<IValue> train_inputs{source};
auto output = mm.forward(train_inputs).toTensor();
auto loss = ::torch::l1_loss(output, targets);
loss.backward();
optimizer.step();
}
}
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<::at::Tensor> bc_parameters = bc.parameters();
::torch::optim::SGD bc_optimizer(
bc_parameters,
::torch::optim::SGDOptions(learning_rate).momentum(momentum));
for (int epoc = 0; epoc < n_epoc; ++epoc) {
for (auto& data : trainData) {
auto source = data.first, targets = data.second;
bc_optimizer.zero_grad();
std::vector<IValue> train_inputs{source};
auto output = bc.forward(train_inputs).toTensor();
auto loss = ::torch::l1_loss(output, targets);
loss.backward();
bc_optimizer.step();
}
}
AT_ASSERT(parameters[0].item<float>() == bc_parameters[0].item<float>());
}
// TODO Renable these tests after parameters are correctly loaded on mobile
/*
TEST(MobileTest, NamedParameters) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_it(self, x):
b = 4
return self.foo + x + b
)");
Module child("m2");
child.register_parameter("foo", 4 * torch::ones({}), false);
child.register_parameter("bar", 4 * torch::ones({}), false);
m.register_module("child1", child);
m.register_module("child2", child.clone());
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
auto full_params = m.named_parameters();
auto mobile_params = bc.named_parameters();
AT_ASSERT(full_params.size() == mobile_params.size());
for (const auto& e : full_params) {
AT_ASSERT(e.value.item().toInt() ==
mobile_params[e.name].item().toInt());
}
}
TEST(MobileTest, SaveLoadParameters) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_it(self, x):
b = 4
return self.foo + x + b
)");
Module child("m2");
child.register_parameter("foo", 4 * torch::ones({}), false);
child.register_parameter("bar", 3 * torch::ones({}), false);
m.register_module("child1", child);
m.register_module("child2", child.clone());
auto full_params = m.named_parameters();
std::stringstream ss;
std::stringstream ss_data;
m._save_for_mobile(ss);
// load mobile module, save mobile named parameters
mobile::Module bc = _load_for_mobile(ss);
_save_parameters(bc.named_parameters(), ss_data);
// load back the named parameters, compare to full-jit Module's
auto mobile_params = _load_parameters(ss_data);
AT_ASSERT(full_params.size() == mobile_params.size());
for (const auto& e : full_params) {
AT_ASSERT(e.value.item<int>() == mobile_params[e.name].item<int>());
}
}
*/
TEST(MobileTest, SaveLoadParametersEmpty) {
Module m("m");
m.define(R"(
def add_it(self, x):
b = 4
return x + b
)");
Module child("m2");
m.register_module("child1", child);
m.register_module("child2", child.clone());
std::stringstream ss;
std::stringstream ss_data;
m._save_for_mobile(ss);
// load mobile module, save mobile named parameters
mobile::Module bc = _load_for_mobile(ss);
_save_parameters(bc.named_parameters(), ss_data);
// load back the named parameters, test is empty
auto mobile_params = _load_parameters(ss_data);
AT_ASSERT(mobile_params.size() == 0);
}
TEST(MobileTest, SaveParametersDefaultsToZip) {
// Save some empty parameters.
std::map<std::string, at::Tensor> empty_parameters;
std::stringstream ss_data;
_save_parameters(empty_parameters, ss_data);
// Verify that parameters were serialized to a ZIP container.
EXPECT_GE(ss_data.str().size(), 4);
EXPECT_EQ(ss_data.str()[0], 'P');
EXPECT_EQ(ss_data.str()[1], 'K');
EXPECT_EQ(ss_data.str()[2], '\x03');
EXPECT_EQ(ss_data.str()[3], '\x04');
}
TEST(MobileTest, SaveParametersCanUseFlatbuffer) {
// Save some empty parameters using flatbuffer.
register_flatbuffer_all();
std::map<std::string, at::Tensor> empty_parameters;
std::stringstream ss_data;
_save_parameters(empty_parameters, ss_data, /*use_flatbuffer=*/true);
// Verify that parameters were serialized to a flatbuffer. The flatbuffer
// magic bytes should be at offsets 4..7. The first four bytes contain an
// offset to the actual flatbuffer data.
EXPECT_GE(ss_data.str().size(), 8);
EXPECT_EQ(ss_data.str()[4], 'P');
EXPECT_EQ(ss_data.str()[5], 'T');
EXPECT_EQ(ss_data.str()[6], 'M');
EXPECT_EQ(ss_data.str()[7], 'F');
}
TEST(MobileTest, SaveLoadParametersUsingFlatbuffers) {
// Create some simple parameters to save.
register_flatbuffer_all();
std::map<std::string, at::Tensor> input_params;
input_params["four_by_ones"] = 4 * torch::ones({});
input_params["three_by_ones"] = 3 * torch::ones({});
// Serialize them using flatbuffers.
std::stringstream data;
_save_parameters(input_params, data, /*use_flatbuffer=*/true);
// The flatbuffer magic bytes should be at offsets 4..7.
EXPECT_EQ(data.str()[4], 'P');
EXPECT_EQ(data.str()[5], 'T');
EXPECT_EQ(data.str()[6], 'M');
EXPECT_EQ(data.str()[7], 'F');
// Read them back and check that they survived the trip.
auto output_params = _load_parameters(data);
EXPECT_EQ(output_params.size(), 2);
{
auto four_by_ones = 4 * torch::ones({});
EXPECT_EQ(
output_params["four_by_ones"].item<int>(), four_by_ones.item<int>());
}
{
auto three_by_ones = 3 * torch::ones({});
EXPECT_EQ(
output_params["three_by_ones"].item<int>(), three_by_ones.item<int>());
}
}
TEST(MobileTest, LoadParametersUnexpectedFormatShouldThrow) {
// Manually create some data that doesn't look like a ZIP or Flatbuffer file.
// Make sure it's longer than 8 bytes, since getFileFormat() needs that much
// data to detect the type.
std::stringstream bad_data;
bad_data << "abcd"
<< "efgh"
<< "ijkl";
// Loading parameters from it should throw an exception.
EXPECT_ANY_THROW(_load_parameters(bad_data));
}
TEST(MobileTest, LoadParametersEmptyDataShouldThrow) {
// Loading parameters from an empty data stream should throw an exception.
std::stringstream empty;
EXPECT_ANY_THROW(_load_parameters(empty));
}
TEST(LiteTrainerTest, SGD) {
Module m("m");
m.register_parameter("foo", torch::ones({1}, at::requires_grad()), false);
m.define(R"(
def forward(self, x):
b = 1.0
return self.foo * x + b
)");
double learning_rate = 0.1, momentum = 0.1;
int n_epoc = 10;
// init: y = x + 1;
// target: y = 2 x + 1
std::vector<std::pair<Tensor, Tensor>> trainData{
{1 * torch::ones({1}), 3 * torch::ones({1})},
};
// Reference: Full jit and torch::optim::SGD
std::stringstream ms;
m.save(ms);
auto mm = load(ms);
std::vector<::at::Tensor> parameters;
for (auto parameter : mm.parameters()) {
parameters.emplace_back(parameter);
}
::torch::optim::SGD optimizer(
parameters, ::torch::optim::SGDOptions(learning_rate).momentum(momentum));
for (int epoc = 0; epoc < n_epoc; ++epoc) {
for (auto& data : trainData) {
auto source = data.first, targets = data.second;
optimizer.zero_grad();
std::vector<IValue> train_inputs{source};
auto output = mm.forward(train_inputs).toTensor();
auto loss = ::torch::l1_loss(output, targets);
loss.backward();
optimizer.step();
}
}
// Test: lite interpreter and torch::jit::mobile::SGD
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<::at::Tensor> bc_parameters = bc.parameters();
::torch::jit::mobile::SGD bc_optimizer(
bc_parameters,
::torch::jit::mobile::SGDOptions(learning_rate).momentum(momentum));
for (int epoc = 0; epoc < n_epoc; ++epoc) {
for (auto& data : trainData) {
auto source = data.first, targets = data.second;
bc_optimizer.zero_grad();
std::vector<IValue> train_inputs{source};
auto output = bc.forward(train_inputs).toTensor();
auto loss = ::torch::l1_loss(output, targets);
loss.backward();
bc_optimizer.step();
}
}
AT_ASSERT(parameters[0].item<float>() == bc_parameters[0].item<float>());
}
namespace {
struct DummyDataset : torch::data::datasets::Dataset<DummyDataset, int> {
explicit DummyDataset(size_t size = 100) : size_(size) {}
int get(size_t index) override {
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
return 1 + index;
}
torch::optional<size_t> size() const override {
return size_;
}
size_t size_;
};
} // namespace
TEST(LiteTrainerTest, SequentialSampler) {
// test that sampler can be used with dataloader
const int kBatchSize = 10;
auto data_loader = torch::data::make_data_loader<mobile::SequentialSampler>(
DummyDataset(25), kBatchSize);
int i = 1;
for (const auto& batch : *data_loader) {
for (const auto& example : batch) {
AT_ASSERT(i == example);
i++;
}
}
}
TEST(LiteTrainerTest, RandomSamplerReturnsIndicesInCorrectRange) {
mobile::RandomSampler sampler(10);
std::vector<size_t> indices = sampler.next(3).value();
for (auto i : indices) {
AT_ASSERT(i < 10);
}
indices = sampler.next(5).value();
for (auto i : indices) {
AT_ASSERT(i < 10);
}
indices = sampler.next(2).value();
for (auto i : indices) {
AT_ASSERT(i < 10);
}
AT_ASSERT(sampler.next(10).has_value() == false);
}
TEST(LiteTrainerTest, RandomSamplerReturnsLessValuesForLastBatch) {
mobile::RandomSampler sampler(5);
AT_ASSERT(sampler.next(3).value().size() == 3);
AT_ASSERT(sampler.next(100).value().size() == 2);
AT_ASSERT(sampler.next(2).has_value() == false);
}
TEST(LiteTrainerTest, RandomSamplerResetsWell) {
mobile::RandomSampler sampler(5);
AT_ASSERT(sampler.next(5).value().size() == 5);
AT_ASSERT(sampler.next(2).has_value() == false);
sampler.reset();
AT_ASSERT(sampler.next(5).value().size() == 5);
AT_ASSERT(sampler.next(2).has_value() == false);
}
TEST(LiteTrainerTest, RandomSamplerResetsWithNewSizeWell) {
mobile::RandomSampler sampler(5);
AT_ASSERT(sampler.next(5).value().size() == 5);
AT_ASSERT(sampler.next(2).has_value() == false);
sampler.reset(7);
AT_ASSERT(sampler.next(7).value().size() == 7);
AT_ASSERT(sampler.next(2).has_value() == false);
sampler.reset(3);
AT_ASSERT(sampler.next(3).value().size() == 3);
AT_ASSERT(sampler.next(2).has_value() == false);
}
} // namespace jit
} // namespace torch
|