1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
#include <gtest/gtest.h>
#include <ATen/core/interned_strings.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
#include <torch/csrc/jit/passes/symbolic_shape_cache.h>
#include <torch/csrc/jit/passes/symbolic_shape_runtime_fusion.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <torch/cuda.h>
#include <unordered_map>
namespace torch {
namespace jit {
namespace {
Node* findNode(std::shared_ptr<Graph>& g, Symbol k) {
DepthFirstGraphNodeIterator graph_it(g);
for (auto node = graph_it.next(); node != nullptr; node = graph_it.next()) {
if (node->kind() == k) {
return node;
}
}
TORCH_INTERNAL_ASSERT(false, "Couldn't find node");
}
} // namespace
TEST(ShapeAnalysisTest, DynamicShapesFusion) {
// Test Generalizing shapes to symbolic dimensions, guarding those symbolic
// dimensions and passing in runtime computed symbolic dimensions via inlined
// shape functions
std::shared_ptr<Graph> subgraph = std::make_shared<Graph>();
const auto graph_string = R"IR(
graph(%x.1 : Tensor, %y.1 : Tensor, %z: Tensor):
%11 : int = prim::Constant[value=0]()
%3 : Tensor = aten::tanh(%x.1)
%out1.1 : Tensor = aten::erf(%3)
%out2.1 : Tensor = aten::relu(%y.1)
%10 : Tensor[] = prim::ListConstruct(%out1.1, %out2.1)
%25 : Tensor = aten::cat(%10, %11)
%28 : Tensor = aten::hardswish(%25)
%29 : Tensor = aten::mul(%28, %z)
return (%28))IR";
torch::jit::parseIR(graph_string, subgraph.get());
/*
set up fused TensorExprGroup
*/
std::shared_ptr<Graph> g = std::make_shared<Graph>();
auto x_inp = g->addInput("x_inp");
auto y_inp = g->addInput("y_inp");
auto z_inp = g->addInput("z_inp");
auto x_type = TensorType::create(at::rand({10, 5}));
auto y_type = TensorType::create(at::rand({4, 5}));
auto z_type = TensorType::create(at::rand({1, 1}));
x_inp->setType(x_type);
y_inp->setType(y_type);
z_inp->setType(z_type);
subgraph->inputs().at(0)->setType(x_type);
subgraph->inputs().at(1)->setType(y_type);
subgraph->inputs().at(2)->setType(z_type);
subgraph->outputs().at(0)->setType(TensorType::create(at::rand({14, 5})));
auto output = g->insertNode(g->create(prim::TensorExprGroup))->output();
subgraph->outputs().at(0)->setType(TensorType::create(at::rand({14, 5})));
output->node()->addInput(x_inp);
output->node()->addInput(y_inp);
output->node()->addInput(z_inp);
output->node()->g_(attr::Subgraph, subgraph);
auto success = GenerateGuard(output->node());
TORCH_INTERNAL_ASSERT(success);
testing::FileCheck()
.check("TensorExprDynamicGuard")
->check_next("prim::If")
->check("aten::add")
->check("TensorExprGroup")
->check_same("symbolic_shape_inputs")
->check("block1")
->check("aten::cat")
->run(*g);
// clang-format off
/* Graph Should Look Something like: (note: strides not yet handled)
graph(%x_inp : Float(10, 5, strides=[5, 1], requires_grad=0, device=cpu),
%y_inp : Float(4, 5, strides=[5, 1], requires_grad=0, device=cpu),
%z_inp : Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu)):
%4 : bool = prim::TensorExprDynamicGuard[types=[Float(SS(-2), SS(-3), strides=[5, 1], requires_grad=0, device=cpu), Float(SS(-4), SS(-3), strides=[5, 1], requires_grad=0, device=cpu), Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu)]](%x_inp, %y_inp, %z_inp)
%5 : Tensor = prim::If(%4)
block0():
%15 : int[] = aten::size(%x_inp)
%16 : int[] = aten::size(%y_inp)
%17 : int = prim::Constant[value=1]()
%18 : int = prim::Constant[value=0]()
%elem.3 : int = aten::__getitem__(%15, %18) # <string>:40:10
%elem.5 : int = aten::__getitem__(%15, %17) # <string>:40:10
%elem.11 : int = aten::__getitem__(%16, %18) # <string>:40:10
%cat_dim_size.48 : int = aten::add(%elem.3, %elem.11) # <string>:321:29
%3 : Tensor = prim::TensorExprGroup_0[symbolic_shape_inputs=[-5, -4, -3, -2]](%x_inp, %y_inp, %z_inp, %cat_dim_size.48, %elem.11, %elem.5, %elem.3)
-> (%3)
block1():
// FallbackGraph is inlined
%14 : Tensor = prim::FallbackGraph_1(%x_inp, %y_inp, %z_inp)
-> (%14)
return ()
with prim::TensorExprGroup_0 = graph(%x.1 : Float(SS(-2), SS(-3), strides=[5, 1], requires_grad=0, device=cpu),
%y.1 : Float(SS(-4), SS(-3), strides=[5, 1], requires_grad=0, device=cpu),
%z : Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu),
%SS_5 : int,
%SS_4 : int,
%SS_3 : int,
%SS_2 : int):
%3 : int = prim::Constant[value=0]()
%4 : Tensor(SS(-2), SS(-3)) = aten::tanh(%x.1)
%5 : Tensor(SS(-2), SS(-3)) = aten::erf(%4)
%6 : Tensor(SS(-4), SS(-3)) = aten::relu(%y.1)
%7 : Tensor[] = prim::ListConstruct(%5, %6)
%8 : Tensor(SS(-5), SS(-3)) = aten::cat(%7, %3)
%9 : Tensor(SS(-5), SS(-3)) = aten::hardswish(%8)
%10 : Tensor(SS(-5), SS(-3)) = aten::mul(%9, %z)
return (%9)
*/
// clang-format on
DepthFirstGraphNodeIterator graph_it(g);
Node* te_group = findNode(g, prim::TensorExprGroup);
/*
Test that input to the kernel - (10, 5), (4, 5), (1, 1) - are correctly
generalized to sym dimensions, and that the output - (10 + 4, 5)
correctly preserves non-catted dim as sym shape and catted dim as new sym
shape
*/
auto tensorexpr_graph = te_group->g(attr::Subgraph);
auto inp1 = tensorexpr_graph->inputs().at(0)->type()->expect<TensorType>();
auto inp2 = tensorexpr_graph->inputs().at(1)->type()->expect<TensorType>();
auto inp3 = tensorexpr_graph->inputs().at(2)->type()->expect<TensorType>();
auto out = tensorexpr_graph->outputs().at(0)->type()->expect<TensorType>();
// 1 dims are preserved
auto inp3_sizes = inp3->sizes().concrete_sizes();
TORCH_INTERNAL_ASSERT(inp3_sizes);
TORCH_INTERNAL_ASSERT(
inp3_sizes->size() == 2 && inp3_sizes->at(0) == 1 &&
inp3_sizes->at(1) == 1);
// 5 made into sym shape
ASSERT_EQ(
inp1->symbolic_sizes()[1].value(), inp2->symbolic_sizes()[1].value());
ASSERT_EQ(
out->symbolic_sizes()[1].value(), inp2->symbolic_sizes()[1].value());
// 4, 10, 14 are different sym shapes
ASSERT_NE(
inp1->symbolic_sizes()[0].value(), inp2->symbolic_sizes()[0].value());
ASSERT_NE(
out->symbolic_sizes()[0].value(), inp1->symbolic_sizes()[0].value());
ASSERT_NE(
out->symbolic_sizes()[0].value(), inp2->symbolic_sizes()[0].value());
/*
Test guard behaves correctly at runtime and symbolic shapes are computed
correctly. As we don't have TE Kernel support for dynamic shapes we're
going to return all of the computed runtime symbolic dimensions as outputs
of the graph on guard success, and return None on guard failure
*/
// Setting up guard to return sym shapes on guard success and None on failure
Node* if_node = findNode(g, prim::If);
IfView if_v(if_node);
if_node->eraseOutput(0);
if_v.thenBlock()->eraseOutput(0);
if_v.elseBlock()->eraseOutput(0);
WithInsertPoint guard(if_node);
auto none_val = g->insertConstant(IValue());
auto sym_shapes = te_group->is(Symbol::attr("symbolic_shape_inputs"));
auto offset = te_group->inputs().size() - sym_shapes.size();
for (size_t i = 0; i < sym_shapes.size(); ++i) {
if_v.thenBlock()->insertOutput(i, te_group->inputs().at(offset + i));
if_v.elseBlock()->insertOutput(i, none_val);
if_node->insertOutput(i)->setType(OptionalType::create(IntType::get()));
}
auto new_outputs = g->createTuple(if_node->outputs())->insertAfter(if_node);
g->registerOutput(new_outputs->output());
te_group->destroy();
findNode(g, prim::FallbackGraph)->destroy();
// Testing bad inputs
auto first_inp = at::rand({2, 5});
std::vector<std::vector<at::Tensor>> second_inps = {
{at::rand({3, 4}), at::rand({1, 1})}, // sym shape mismatch
{at::rand({5, 2}).transpose(0, 1), at::rand({1, 1})}, // discontiguous
{at::zeros({2, 5}).to(at::ScalarType::Int),
at::rand({1, 1})}, // wrong dtype
{at::rand({2, 5, 1}), at::rand({1, 1})}, // wrong # dims
{at::rand({2, 5}).requires_grad_(true),
at::rand({1, 1})}, // requires grad
{at::rand({2, 5}), at::rand({1, 12})}, // concrete dim mismatch (1)
};
if (torch::cuda::is_available()) {
second_inps.push_back({at::rand({2, 5}).cuda(), at::rand({1, 1})});
}
for (const auto& last_inps : second_inps) {
// todo - reusing interpreter across iters gave error
Code code(g, "");
InterpreterState interp(code);
auto stack = createStack({at::rand({2, 5}), last_inps[0], last_inps[1]});
interp.run(stack);
TORCH_INTERNAL_ASSERT(pop(stack).toTuple()->elements().at(0).isNone());
}
// Test good inputs
Code code(g, "");
InterpreterState interp(code);
std::vector<at::Tensor> inps = {
at::rand({2, 5}), at::rand({4, 5}), at::rand({1, 1})};
Stack stack(inps.begin(), inps.end());
interp.run(stack);
auto tuple = pop(stack).toTuple();
TORCH_INTERNAL_ASSERT(tuple->elements().at(0).isInt());
// Testing that the sym shape calculation was correct
for (size_t i = 0; i < sym_shapes.size(); ++i) {
auto sym_shape = sym_shapes[i];
auto computed_value = tuple->elements().at(i).toInt();
if (sym_shape == inp1->symbolic_sizes().at(0).value()) {
ASSERT_EQ(computed_value, 2);
} else if (sym_shape == inp1->symbolic_sizes().at(1).value()) {
ASSERT_EQ(computed_value, 5);
} else if (sym_shape == inp2->symbolic_sizes().at(0).value()) {
ASSERT_EQ(computed_value, 4);
} else if (sym_shape == out->symbolic_sizes().at(0).value()) {
ASSERT_EQ(computed_value, 6);
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
}
TEST(ShapeAnalysisTest, MovingConstantOutOfFusionGroups) {
std::shared_ptr<Graph> subgraph = std::make_shared<Graph>();
const auto graph_string = R"IR(
graph(%x.1 : Tensor):
%none : NoneType = prim::Constant()
%size1 : int = prim::Constant[value=1]()
%size10 : int = prim::Constant[value=10]()
%sizes : int[] = prim::ListConstruct(%size10, %size1)
%device : Device = prim::Constant[value="cpu"]()
%10 : Tensor = aten::ones(%sizes, %none, %none, %device, %none)
%3 : Tensor = aten::tanh(%x.1)
%29 : Tensor = aten::mul(%3, %10)
return (%29))IR";
torch::jit::parseIR(graph_string, subgraph.get());
ConstantPropagation(subgraph);
std::shared_ptr<Graph> g = std::make_shared<Graph>();
auto x_inp = g->addInput("x_inp");
auto x_type = TensorType::create(at::rand({10, 5}));
x_inp->setType(x_type);
subgraph->inputs().at(0)->setType(x_type);
subgraph->outputs().at(0)->setType(x_type);
auto output = g->insertNode(g->create(prim::TensorExprGroup))->output();
output->node()->addInput(x_inp);
output->node()->g_(attr::Subgraph, subgraph);
auto success = GenerateGuard(output->node());
TORCH_INTERNAL_ASSERT(success);
// Check that the constants have been moved out of the fused graph.
// This should result in not have any conditionals other than the one
// checking the result of TensorExprDynamicGuard.
testing::FileCheck()
.check("TensorExprDynamicGuard")
->check_next("prim::If")
->check_not("prim::If") // no other IFs due to constants.
->check("TensorExprGroup")
->check("block1")
->check("FallbackGraph")
->run(*g);
}
namespace {
c10::optional<int64_t> sym_dim = c10::nullopt;
// NOLINTNEXTLINE(bugprone-easily-swappable-parameters)
void assertShapeEqual(c10::SymbolicShape& a, c10::SymbolicShape& e) {
auto a_canonical = CanonicalizedSymbolicShape(a);
auto e_canonical = CanonicalizedSymbolicShape(e);
EXPECT_EQ(a_canonical, e_canonical);
}
void assertShapeEqual(
c10::optional<std::vector<c10::SymbolicShape>>& actual,
std::vector<c10::optional<int64_t>> expected) {
ASSERT_TRUE(actual.has_value());
ASSERT_EQ(actual->size(), 1);
auto symb_expected = c10::SymbolicShape(expected);
assertShapeEqual(actual->at(0), symb_expected);
}
const FunctionSchema* getSchema(const char* name) {
return &(getOperatorForLiteral(name)->schema());
}
} // namespace
TEST(ShapeAnalysisTest, SymbolicShapeAPI) {
// Figure out how to fetch a function schema
// Ask someone else how to create a function schema / operator in C++
auto schema = getSchema(
"aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor");
c10::IValue const_size_1 = std::vector<int64_t>{64, 56, 56};
c10::IValue const_size_2 = std::vector<int64_t>{1, 56, 56};
// Check vector initializer list syntax
c10::SymbolicShape ss_concrete =
std::vector<c10::optional<int64_t>>{1, 56, 56};
c10::SymbolicShape ss1 = std::vector<c10::optional<int64_t>>{sym_dim, 56, 56};
c10::SymbolicShape ss2 =
std::vector<c10::optional<int64_t>>{64, sym_dim, sym_dim};
c10::SymbolicShape ss3 =
std::vector<c10::optional<int64_t>>{sym_dim, sym_dim, sym_dim, sym_dim};
auto res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{const_size_1, const_size_1});
assertShapeEqual(res, {64, 56, 56});
res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{const_size_1, const_size_2});
assertShapeEqual(res, {64, 56, 56});
res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{const_size_1, ss1});
assertShapeEqual(res, {64, 56, 56});
res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{const_size_2, ss1});
assertShapeEqual(res, {sym_dim, 56, 56});
res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{ss_concrete, ss2});
assertShapeEqual(res, {64, 56, 56});
res = calculateSymbolicShapesOnOp(schema, std::vector<SSAInput>{ss2, ss3});
assertShapeEqual(res, {sym_dim, 64, sym_dim, sym_dim});
}
TEST(ShapeAnalysisTest, BoundedSymbolicShapes) {
auto schema = getSchema("aten::nonzero(Tensor self) -> (Tensor)");
// Test that we generate symbolic shapes for the output of a nonzero op
c10::IValue const_size_1 = std::vector<int64_t>{5, 10};
auto res =
calculateSymbolicShapesOnOp(schema, std::vector<SSAInput>{const_size_1});
assertShapeEqual(res, {sym_dim, 2});
// Test that nonzero can also create concrete shapes
c10::IValue const_size_2 = std::vector<int64_t>({1, 0});
res =
calculateSymbolicShapesOnOp(schema, std::vector<SSAInput>{const_size_2});
assertShapeEqual(res, {0, 2});
}
TEST(ShapeAnalysisTest, SymbolicShapeCaching) {
clear_shape_cache();
auto schema = getSchema("aten::mm(Tensor self, Tensor mat2) -> Tensor");
c10::IValue const_size_1 = std::vector<int64_t>{64, 56};
c10::IValue const_size_2 = std::vector<int64_t>{64, 56};
c10::IValue const_size_3 = std::vector<int64_t>{64, 20};
c10::SymbolicShape ss1 = c10::SymbolicShape({sym_dim, 64});
c10::SymbolicShape ss2 = c10::SymbolicShape({sym_dim, 64});
c10::SymbolicShape ss3 = c10::SymbolicShape({sym_dim, sym_dim});
auto res = calculateSymbolicShapesOnOp(schema, {ss1, const_size_1});
assertShapeEqual(res, {sym_dim, 56});
auto res1_val = res->at(0);
// The exact same arguments should return the exact same result
res = calculateSymbolicShapesOnOp(schema, {ss1, const_size_1});
auto res2_val = res->at(0);
EXPECT_EQ(res1_val, res2_val);
EXPECT_EQ(get_shape_cache_size(), 1);
// Same shape but different symbols should return same shape
// but different symbolic indicies
res = calculateSymbolicShapesOnOp(schema, {ss2, const_size_2});
auto res3_val = res->at(0);
assertShapeEqual(res3_val, res2_val);
EXPECT_NE(res3_val, res2_val);
EXPECT_EQ(get_shape_cache_size(), 1);
// Different concrete shape should be cached separately
res = calculateSymbolicShapesOnOp(schema, {ss1, const_size_3});
assertShapeEqual(res, {sym_dim, 20});
EXPECT_EQ(get_shape_cache_size(), 2);
res = calculateSymbolicShapesOnOp(schema, {ss3, const_size_3});
assertShapeEqual(res, {sym_dim, 20});
EXPECT_EQ(get_shape_cache_size(), 3);
res = calculateSymbolicShapesOnOp(schema, {ss3, ss3});
assertShapeEqual(res, {sym_dim, sym_dim});
EXPECT_EQ(get_shape_cache_size(), 4);
}
TEST(ShapeAnalysisTest, ShapeCacheMultipleFns) {
clear_shape_cache();
auto squeeze_op =
getSchema("aten::squeeze.dim(Tensor(a) self, int dim) -> Tensor(a)");
auto mul_tensor =
getSchema("aten::mul.Tensor(Tensor self, Tensor other) -> Tensor");
auto mul_scalar =
getSchema("aten::mul.Scalar(Tensor self, Scalar other) -> Tensor");
auto div_tensor =
getSchema("aten::div.Tensor(Tensor self, Tensor other) -> Tensor");
auto matmul = getSchema("aten::mm(Tensor self, Tensor mat2) -> Tensor");
c10::IValue const_int = 1;
c10::SymbolicShape ss1 = c10::SymbolicShape({sym_dim, 64});
auto res = calculateSymbolicShapesOnOp(squeeze_op, {ss1, const_int});
assertShapeEqual(res, {sym_dim, 64});
// Show that cache can handle multiple functions
res = calculateSymbolicShapesOnOp(mul_scalar, {ss1, const_int});
assertShapeEqual(res, {sym_dim, 64});
EXPECT_EQ(get_shape_cache_size(), 2);
res = calculateSymbolicShapesOnOp(mul_tensor, {ss1, ss1});
assertShapeEqual(res, {sym_dim, 64});
EXPECT_EQ(get_shape_cache_size(), 3);
// Even when the expected outcome is the same, should not collide
res = calculateSymbolicShapesOnOp(div_tensor, {ss1, ss1});
assertShapeEqual(res, {sym_dim, 64});
EXPECT_EQ(get_shape_cache_size(), 4);
// Don't lose cached objects
res = calculateSymbolicShapesOnOp(mul_scalar, {ss1, const_int});
assertShapeEqual(res, {sym_dim, 64});
EXPECT_EQ(get_shape_cache_size(), 4);
res = calculateSymbolicShapesOnOp(matmul, {ss1, ss1});
// SSA can infer that sym_dim is 64 as both tensors
// use the same sym_dim
assertShapeEqual(res, {64, 64});
EXPECT_EQ(get_shape_cache_size(), 5);
}
TEST(ShapeAnalysisTest, TestShapeMultipleReturns) {
clear_shape_cache();
auto max_dim_op = getSchema(
"aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)");
c10::IValue const_int = 1;
c10::IValue false_ival = false;
c10::SymbolicShape ss1 = c10::SymbolicShape({sym_dim, 64});
c10::SymbolicShape ss2 = c10::SymbolicShape({sym_dim, 64});
auto res =
calculateSymbolicShapesOnOp(max_dim_op, {ss1, const_int, false_ival});
c10::SymbolicShape expected_res = c10::SymbolicShape({sym_dim});
assertShapeEqual(res->at(0), expected_res);
// res0 and res1 should share the same symbolic symbol
EXPECT_EQ(res->at(0), res->at(1));
// Also test that the shape cache also returns consistent result shapes
res = calculateSymbolicShapesOnOp(max_dim_op, {ss2, const_int, false_ival});
assertShapeEqual(res->at(0), expected_res);
EXPECT_EQ(res->at(0), res->at(1));
EXPECT_EQ(get_shape_cache_size(), 1);
}
} // namespace jit
} // namespace torch
|