1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/clear_undefinedness.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
namespace torch {
namespace jit {
Stack createStack(std::vector<at::Tensor>&& list) {
return Stack(
std::make_move_iterator(list.begin()),
std::make_move_iterator(list.end()));
}
void assertAllClose(const tensor_list& a, const tensor_list& b) {
ASSERT_EQ(a.size(), b.size());
for (size_t i = 0; i < a.size(); ++i) {
ASSERT_TRUE(a[i].is_same_size(b[i]));
ASSERT_TRUE(a[i].allclose(b[i]));
}
}
std::vector<at::Tensor> run(
InterpreterState& interp,
const std::vector<at::Tensor>& inputs) {
std::vector<IValue> stack(inputs.begin(), inputs.end());
interp.run(stack);
return fmap(stack, [](const IValue& i) { return i.toTensor(); });
}
static void unpackReturnTuple(Stack& stack) {
auto tuple = pop(stack).toTuple();
stack.insert(stack.end(), tuple->elements().begin(), tuple->elements().end());
}
std::pair<tensor_list, tensor_list> runGradient(
Gradient& grad_spec,
tensor_list& tensors_in,
tensor_list& tensor_grads_in) {
static const auto as_tensorlist = [](const Stack& stack) {
return fmap(stack, [](const IValue& i) { return i.toTensor(); });
};
ClearUndefinedness(grad_spec.df);
Code f_code{grad_spec.f, ""}, df_code{grad_spec.df, ""};
InterpreterState f_interpreter{f_code}, df_interpreter{df_code};
auto f_stack = fmap<IValue>(tensors_in);
f_interpreter.run(f_stack);
Stack df_stack;
df_stack.insert(
df_stack.end(), tensor_grads_in.begin(), tensor_grads_in.end());
for (auto offset : grad_spec.df_input_captured_inputs)
df_stack.push_back(tensors_in[offset]);
for (auto offset : grad_spec.df_input_captured_outputs)
df_stack.push_back(f_stack[offset]);
df_interpreter.run(df_stack);
unpackReturnTuple(df_stack);
// Outputs of f needs to be sliced
f_stack.erase(f_stack.begin() + grad_spec.f_real_outputs, f_stack.end());
return std::make_pair(as_tensorlist(f_stack), as_tensorlist(df_stack));
}
std::shared_ptr<Graph> build_lstm() {
const auto graph_string = R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor,
%3 : Tensor,
%4 : Tensor):
%5 : Tensor = aten::mm(%0, %3)
%6 : Tensor = aten::mm(%1, %4)
%7 : int = prim::Constant[value=1]()
%8 : Tensor = aten::add(%5, %6, %7)
%9 : Tensor, %10 : Tensor, %11 : Tensor, %12 : Tensor = prim::ConstantChunk[chunks=4, dim=1](%8)
%13 : Tensor = aten::sigmoid(%9)
%14 : Tensor = aten::sigmoid(%12)
%15 : Tensor = aten::tanh(%11)
%16 : Tensor = aten::sigmoid(%10)
%17 : Tensor = aten::mul(%16, %2)
%18 : Tensor = aten::mul(%13, %15)
%19 : int = prim::Constant[value=1]()
%20 : Tensor = aten::add(%17, %18, %19)
%21 : Tensor = aten::tanh(%20)
%22 : Tensor = aten::mul(%14, %21)
return (%22, %20))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_analysis_graph() {
// We use following two schemas for this graph:
// 1. slice.Tensor(Tensor(a) self, int dim=0, int? start=None,
// int? end=None, int step=1) -> Tensor(a)
// 2. slice.str(str string, int? start=None, int? end=None,
// int step=1) -> str
// %3 and %4 use slice.Tensor while %5 use slice.str.
// Since we can see %3 and %4 have the same last argument that is never used
// (same as default value of schema), we know we can ignore that last arg. For
// %5, we see that last three args are same as schema default, hence
// unnecessary.
const auto graph_string = R"IR(
graph(%0 : Tensor):
%1 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=2]()
%20 : int = prim::Constant[value=0]()
%21 : int = prim::Constant[value=9223372036854775807]()
%22 : str = prim::Constant[value="value"]()
%3 : Tensor = aten::slice(%0, %1, %20, %2, %1)
%4 : Tensor = aten::slice(%0, %2, %20, %21, %1)
%5 : str = aten::slice(%22, %20, %21, %2)
return (%3, %4, %5))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_with_out() {
const auto graph_string = R"IR(
graph(%x.1 : Tensor,
%y.1 : Tensor):
%8 : NoneType = prim::Constant()
%6 : int = prim::Constant[value=1]()
%7 : Tensor = aten::add(%x.1, %y.1, %6, %y.1)
return (%8))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_analysis_graph_nested() {
// this is pretty much same test as build_mobile_export_analysis_graph(),
// but some aten::slice operators are hidden under block statement to check
// if we are correctly recursing all the nodes in graph.
const auto graph_string = R"IR(
graph(%0 : Tensor):
%1 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=2]()
%20 : int = prim::Constant[value=0]()
%21 : int = prim::Constant[value=9223372036854775807]()
%22 : str = prim::Constant[value="value"]()
%3 : Tensor = aten::slice(%0, %1, %20, %2, %1)
%23 : bool = aten::Bool(%3)
%c : Tensor = prim::If(%23)
block0():
%4 : Tensor = aten::slice(%0, %2, %20, %21, %1)
%5 : str = aten::slice(%22, %20, %21, %2)
%c.1 : Tensor = aten::slice(%0, %1, %20, %2, %1)
-> (%c.1)
block1():
-> (%3)
return (%3, %3))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_analysis_graph_with_vararg() {
const auto graph_string = R"IR(
graph(%0 : Tensor):
%1 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=2]()
%3 : int = prim::Constant[value=3]()
%4 : int[] = prim::tolist(%1, %2)
%5 : int[] = prim::tolist(%1, %2, %3)
return (%4, %5))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_analysis_graph_non_const() {
const auto graph_string = R"IR(
graph(%input.1 : Tensor):
%7 : int = prim::Constant[value=1]() # <string>:3:58
%9 : int = prim::Constant[value=0]() # <string>:3:66
%8 : int[] = prim::ListConstruct(%7, %7)
%10 : int[] = prim::ListConstruct(%9, %9)
%11 : int[] = prim::ListConstruct(%7, %7)
%12 : Tensor = aten::conv2d(%input.1, %input.1, %input.1, %8, %10, %11, %7)
return (%12))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
at::Tensor t_use(at::Tensor x) {
return x;
}
at::Tensor t_def(at::Tensor x) {
return x.t();
}
bool checkRtol(const at::Tensor& diff, const std::vector<at::Tensor> inputs) {
double maxValue = 0.0;
for (auto& tensor : inputs) {
maxValue = fmax(tensor.abs().max().item<float>(), maxValue);
}
return diff.abs().max().item<float>() < 2e-6 * maxValue;
}
bool almostEqual(const at::Tensor& a, const at::Tensor& b) {
return checkRtol(a - b, {a, b});
}
bool exactlyEqual(const at::Tensor& a, const at::Tensor& b) {
return (a - b).abs().max().item<float>() == 0.f;
}
bool exactlyEqual(
const std::vector<at::Tensor>& a,
const std::vector<at::Tensor>& b) {
if (a.size() != b.size()) {
return false;
}
for (size_t i = 0; i < a.size(); ++i) {
if (!exactlyEqual(a[i], b[i])) {
return false;
}
}
return true;
}
std::pair<at::Tensor, at::Tensor> lstm(
at::Tensor input,
at::Tensor hx,
at::Tensor cx,
at::Tensor w_ih,
at::Tensor w_hh) {
auto gates = input.mm(t_use(w_ih)) + hx.mm(t_use(w_hh));
auto chunked_gates = gates.chunk(4, 1);
auto ingate = chunked_gates[0];
auto forgetgate = chunked_gates[1];
auto cellgate = chunked_gates[2];
auto outgate = chunked_gates[3];
ingate = ingate.sigmoid();
outgate = outgate.sigmoid();
cellgate = cellgate.tanh();
forgetgate = forgetgate.sigmoid();
auto cy = (forgetgate * cx) + (ingate * cellgate);
auto hy = outgate * cy.tanh();
return {hy, cy};
}
inline c10::AliasAnalysisKind aliasAnalysisFromSchema() {
return c10::AliasAnalysisKind::FROM_SCHEMA;
}
namespace {
RegisterOperators reg({
// This operator is intended to be used in JIT analysis and transformation
// pass unit tests in which Values with type Tensor are often required. It
// should not be used in situations in which the graph is actually executed
// because it always produces empty Tensors.
Operator(
"prim::MakeTestTensor() -> Tensor",
[](Stack& stack) { push(stack, at::Tensor()); },
aliasAnalysisFromSchema()),
});
} // namespace
std::vector<at::Tensor> runGraph(
std::shared_ptr<Graph> graph,
const std::vector<at::Tensor>& inputs) {
std::vector<IValue> stack = fmap<IValue>(inputs);
Code code(graph, "test");
InterpreterState(code).run(stack);
TORCH_INTERNAL_ASSERT(!stack.empty());
// Graph outputs that are handled below:
// * A list of Tensors.
// * 1 Tensor.
if (stack.front().isTensorList()) {
return stack.front().toTensorVector();
}
TORCH_INTERNAL_ASSERT(stack.front().isTensor());
return {stack.front().toTensor()};
}
} // namespace jit
} // namespace torch
|