1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/resolver.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/module.h>
#include <unordered_set>
namespace torch {
namespace jit {
namespace mobile {
TEST(RunTimeTest, LoadAndForward) {
// Load check in model: sequence.ptl
std::string filePath(__FILE__);
auto testModelFile = filePath.substr(0, filePath.find_last_of("/\\") + 1);
testModelFile.append("sequence.ptl");
// sequence.ptl source code:
// class A(torch.nn.Module):
// def __init__(self):
// super(A, self).__init__()
//
// def forward(self, x):
// return x + 1
//
// class B(torch.nn.Module):
// def __init__(self):
// super(B, self).__init__()
//
// def forward(self, x):
// return x + 2
//
// class C(torch.nn.Module):
// def __init__(self):
// super(C, self).__init__()
// self.A0 = A()
// self.B0 = B()
//
// def forward(self, x):
// return self.A0.forward(self.B0.forward(x))
Module bc = _load_for_mobile(testModelFile);
auto forward_method = bc.find_method("forward");
std::vector<c10::IValue> input{c10::IValue(at::tensor(1))};
const auto result = bc.forward(input);
const auto expected_result = c10::IValue(at::tensor(4));
ASSERT_EQ(result, expected_result);
}
TEST(RunTimeTest, Delegate) {
std::string filePath(__FILE__);
auto testModelFile = filePath.substr(0, filePath.find_last_of("/\\") + 1);
// "delegate_test.ptl" is generated from test/cpp/jit/test_backend.cpp,
// BackendTest.TestCompiler. This test is on target runtime. It has
// model running capability, but no compilation and serialization.
// The mobile model delegated to the "backend_with_compiler_demo" backend
// The model is from the jit code:
// Module m("m");
// m.define(R"(
// def forward(self, x, h):
// return x + h
// )");
testModelFile.append("delegate_test.ptl");
auto mlm = _load_for_mobile(testModelFile);
std::vector<IValue> inputs;
inputs.emplace_back(2.0 * at::ones({}));
inputs.emplace_back(1.0 * at::ones({}));
auto mres = mlm.forward(inputs);
AT_ASSERT(mres.toTensor().equal(3 * at::ones({})));
}
TEST(RunTimeTest, DelegateException) {
std::string filePath(__FILE__);
auto testModelFile = filePath.substr(0, filePath.find_last_of("/\\") + 1);
/*
* Model: delegated_submodule_with_debug_info.ptl
* Model structure:
* def AA(..):
* def forward(self, x, y):
* return x + y
*
* def A(..):
* def __init__(..):
* self.AA0 = AA()
* def forward(self, x, y):
* return self.AA0.forward(x, y) + 3
*
* def B(..):
* def forward(self, x):
* return x + 2
*
* def C(..):
* def __init__(..):
* self.A0 = A()
* self.B0 = B()
* def forward(self, x, y):
* return self.A0.forward(x, y) + self.B0.forward(x)
*
* std::vector<IValue> inputs;
* inputs.emplace_back(torch::rand({2, 4}));
* inputs.emplace_back(torch::rand({13, 9}));
* Run with inputs and expect exception
* Erro stack trace will look like this:
* Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
* Traceback of TorchScript (most recent call last):
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.A0.forward(x, y) + self.B0.forward(x)
* ~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 5, in FunctionName_UNKNOWN
* typed_inputs: List[Any] = [x, y, ]
* if self.__backend.is_available() :
* _0, = self.__backend.execute(self.__handles["forward"],
* typed_inputs)
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
* assert isinstance(_0, Tensor)
* return _0
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return self.AA0.forward(x, y) + 3
* ~~~~~~~~~~~~~~~~ <--- HERE
*
* File "<string>", line 3, in FunctionName_UNKNOWN
*
* def forward(self, x, y):
* return x + y
* ~~~~~ <--- HERE
*
*
*/
testModelFile.append("delegated_submodule_with_debug_info.ptl");
auto mlm = _load_for_mobile(testModelFile);
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
std::string error_pattern = R"(
Module hierarchy:top(C)::<unknown>.A0(backend_with_compiler_demoLoweredModule)::forward.AA0(AA)::forward.aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in forward
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in <unknown>
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
}
} // namespace mobile
} // namespace jit
} // namespace torch
|