1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
#include <gtest/gtest.h>
#include <torch/csrc/distributed/autograd/context/container.h>
#include <torch/csrc/distributed/autograd/context/context.h>
#include <torch/csrc/distributed/autograd/engine/dist_engine.h>
#include <torch/csrc/distributed/autograd/utils.h>
#include <torch/csrc/distributed/c10d/TCPStore.hpp>
#include <torch/csrc/distributed/rpc/rref_context.h>
#include <torch/csrc/distributed/rpc/script_call.h>
#include <torch/csrc/distributed/rpc/script_remote_call.h>
#include <torch/csrc/distributed/rpc/script_resp.h>
#include <torch/csrc/distributed/rpc/utils.h>
#include <torch/csrc/jit/runtime/operator.h>
namespace torch {
namespace distributed {
namespace rpc {
using torch::distributed::autograd::DistAutogradContainer;
using torch::distributed::autograd::DistAutogradContext;
DistAutogradContainer* getDistAutogradContainer();
class TestE2EBase : public ::testing::Test {
protected:
void SetUp() override {
// Setup distributed autograd.
autogradContainer = getDistAutogradContainer();
// Setup server store.
c10d::TCPStoreOptions opts{
/* port */ 0,
/* isServer */ true,
numWorkers,
/* waitWorkers */ true,
/* timeout */ std::chrono::seconds(10)};
store = c10::make_intrusive<c10d::TCPStore>(serverAddress, opts);
buildRpcAgent();
rpcAgentPostProcessing();
}
void rpcAgentPostProcessing() {
RpcAgent::setCurrentRpcAgent(rpcAgent);
std::shared_ptr<TypeResolver> typeResolver =
std::make_shared<TypeResolver>([&](const c10::QualifiedName& qn) {
// For Dict that is used for device map.
auto pos = qn.name().find("Dict");
if (pos != std::string::npos) {
return c10::StrongTypePtr(
nullptr,
c10::DictType::create(
c10::StringType::get(), c10::StringType::get()));
}
return c10::StrongTypePtr(
nullptr, c10::TensorType::create(at::Tensor()));
});
rpcAgent->setTypeResolver(typeResolver);
rpcAgent->start();
}
void TearDown() override {
rpcAgent->join();
rpcAgent->shutdown();
RpcAgent::setCurrentRpcAgent(nullptr);
}
c10::intrusive_ptr<OwnerRRef> createRemoteRRef(
at::Tensor t1,
at::Tensor t2,
std::shared_ptr<torch::jit::Operator> op) {
auto& ctx = RRefContext::getInstance();
auto ownerRRef = ctx.createOwnerRRef(c10::TensorType::create(t1));
// prevent this owner RRef being deleted due to other forks
ctx.addSelfAsFork(ownerRRef);
ScriptRemoteCall scriptRemoteCall(
op, {t1, t2, 1}, ownerRRef->rrefId(), ownerRRef->rrefId());
auto jitFuture = autograd::sendMessageWithAutograd(
*rpcAgent,
rpcAgent->getWorkerInfo("worker"),
std::move(scriptRemoteCall).toMessage(),
false);
ownerRRef->registerOwnerCreationFuture(jitFuture);
// Builtin operators does not return py::object, and hence does not require
// GIL for destructing the potentially deleted OwerRRef.
jitFuture->addCallback(
[ownerRRefId = ownerRRef->rrefId()](JitFuture& jitFuture) {
callback::finishCreatingOwnerRRef(jitFuture, ownerRRefId);
});
return ownerRRef;
}
at::Tensor remoteAdd(
at::Tensor t1,
at::Tensor t2,
std::shared_ptr<torch::jit::Operator> op) {
ScriptCall scriptCall(op, {t1, t2, /* alpha */ 1});
// Send the RPC and return result.
auto response = autograd::sendMessageWithAutograd(
*rpcAgent,
rpcAgent->getWorkerInfo("worker"),
std::move(scriptCall).toMessage());
response->waitAndThrow();
MessageType messageType = MessageType::FORWARD_AUTOGRAD_RESP;
auto wrappedResponse = deserializeResponse(
std::move(*response->value().toCustomClass<Message>()), messageType);
return static_cast<ScriptResp&>(*wrappedResponse).value().toTensor();
}
virtual void buildRpcAgent() = 0;
class AutogradContextGuard {
public:
explicit AutogradContextGuard()
: context(DistAutogradContainer::getInstance().newContext()) {}
~AutogradContextGuard() {
DistAutogradContainer::getInstance().releaseContext(context->contextId());
}
private:
std::shared_ptr<DistAutogradContext> context;
};
void runTrainingLoop() {
auto options = at::TensorOptions().requires_grad(true);
auto t1 = torch::ones({3, 3}, options);
auto t2 = torch::ones({3, 3}, options);
c10::OperatorName full_name("aten::add", "Tensor");
auto matchedOp = torch::jit::findOperatorFor(full_name);
ASSERT_TRUE(matchedOp);
for (size_t i = 0; i < numIters; i++) {
// Create the autograd context guard.
AutogradContextGuard guard;
// Multiple RPCs within one autograd context for the forward pass.
auto result = remoteAdd(t1, t2, matchedOp);
for (size_t j = 0; j < 5; j++) {
result = remoteAdd(t1, result, matchedOp);
}
auto rref = createRemoteRRef(t1, result, matchedOp);
result = rref->getValue().toTensor();
// Run backward pass now.
autograd::DistEngine::getInstance().execute(
DistAutogradContainer::currentContextId(),
{torch::sum(result)},
/* retainGraph */ false);
}
}
DistAutogradContainer* autogradContainer;
std::shared_ptr<RpcAgent> rpcAgent;
static const size_t numIters;
static const size_t numWorkers;
c10::intrusive_ptr<c10d::Store> store;
static const char* serverAddress;
};
} // namespace rpc
} // namespace distributed
} // namespace torch
|