File: test_tensorpipe_serialization.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (181 lines) | stat: -rw-r--r-- 7,455 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#include <gtest/gtest.h>

#include <c10/util/irange.h>
#include <tensorpipe/common/cpu_buffer.h>
#include <tensorpipe/core/message.h>
#include <torch/csrc/distributed/rpc/tensorpipe_utils.h>
#include <torch/torch.h>

#include <memory>
#include <string>
#include <vector>

TEST(TensorpipeSerialize, Base) {
  // Sender serializes
  at::Tensor t1 = torch::ones({1024}, at::ScalarType::Int);
  at::Tensor t2 = torch::ones({1024}, at::ScalarType::Float);
  std::vector<at::Tensor> tensors{t1, t2};
  std::vector<char> payload = {'1', '2', '3'};
  std::vector<char> payloadCopy = payload; // for testing
  torch::distributed::rpc::MessageType mtype =
      torch::distributed::rpc::MessageType::UNKNOWN;
  int64_t mId = 100;
  auto sendingRpcMessage =
      c10::make_intrusive<torch::distributed::rpc::Message>(
          std::move(payload), std::move(tensors), mtype);
  sendingRpcMessage->setId(mId);
  tensorpipe::Message sendingTpMessage;
  torch::distributed::rpc::TensorpipeWriteBuffers sendingTpBuffers;
  std::tie(sendingTpMessage, sendingTpBuffers) =
      torch::distributed::rpc::tensorpipeSerialize(
          std::move(sendingRpcMessage), {}, {});

  // Mimic receiving message descriptor: recvingTpDescriptor is a copy of
  // sendingTpMessage except for the data pointers which are left null.
  tensorpipe::Descriptor recvingTpDescriptor;
  recvingTpDescriptor.metadata = sendingTpMessage.metadata;
  recvingTpDescriptor.payloads.reserve(sendingTpMessage.payloads.size());
  for (auto& tpPayload : sendingTpMessage.payloads) {
    tensorpipe::Descriptor::Payload p;
    p.length = tpPayload.length;
    p.metadata = tpPayload.metadata;
    recvingTpDescriptor.payloads.push_back(std::move(p));
  }
  EXPECT_EQ(
      recvingTpDescriptor.payloads.size(), sendingTpMessage.payloads.size());
  recvingTpDescriptor.tensors.reserve(sendingTpMessage.tensors.size());
  for (auto& tpTensor : sendingTpMessage.tensors) {
    tensorpipe::Descriptor::Tensor t;
    t.length = tpTensor.length;
    t.sourceDevice = tpTensor.buffer.device();
    t.targetDevice = tpTensor.targetDevice;
    t.metadata = tpTensor.metadata;
    recvingTpDescriptor.tensors.push_back(std::move(t));
  }
  EXPECT_EQ(
      recvingTpDescriptor.tensors.size(), sendingTpMessage.tensors.size());

  // Mimic readDescriptor() callback:
  // - Allocate buffers
  // - Fill pointers in tensorpipe message
  tensorpipe::Allocation recvingTpAllocation;
  torch::distributed::rpc::TensorpipeReadBuffers recvingTpBuffers;
  std::tie(recvingTpAllocation, recvingTpBuffers) =
      torch::distributed::rpc::tensorpipeAllocate(recvingTpDescriptor, {});

  // Mimic tensorpipe data transfer
  EXPECT_EQ(
      recvingTpAllocation.payloads.size(), sendingTpMessage.payloads.size());
  for (const auto i : c10::irange(recvingTpAllocation.payloads.size())) {
    tensorpipe::Message::Payload& srcPayload = sendingTpMessage.payloads[i];
    tensorpipe::Allocation::Payload& dstPayload =
        recvingTpAllocation.payloads[i];
    if (srcPayload.length) {
      // Empty vector's data() can return nullptr, use the length to avoid
      // coying into nullptr
      memcpy(dstPayload.data, srcPayload.data, srcPayload.length);
    }
  }
  EXPECT_EQ(
      recvingTpAllocation.tensors.size(), sendingTpMessage.tensors.size());
  for (const auto i : c10::irange(recvingTpAllocation.tensors.size())) {
    tensorpipe::Message::Tensor& srcTensor = sendingTpMessage.tensors[i];
    tensorpipe::Allocation::Tensor& dstTensor = recvingTpAllocation.tensors[i];
    memcpy(
        dstTensor.buffer.unwrap<tensorpipe::CpuBuffer>().ptr,
        srcTensor.buffer.unwrap<tensorpipe::CpuBuffer>().ptr,
        srcTensor.length);
  }

  // Mimic read() callback:
  // - Unpickle
  c10::intrusive_ptr<torch::distributed::rpc::Message> recvingRpcMessage =
      torch::distributed::rpc::tensorpipeDeserialize(
          std::move(recvingTpDescriptor), std::move(recvingTpBuffers));

  // Data is ready
  EXPECT_EQ(mtype, recvingRpcMessage->type());
  EXPECT_EQ(payloadCopy, recvingRpcMessage->payload());
  EXPECT_EQ(mId, recvingRpcMessage->id());
  EXPECT_TRUE(torch::equal(t1, recvingRpcMessage->tensors()[0]));
  EXPECT_TRUE(torch::equal(t2, recvingRpcMessage->tensors()[1]));
}

TEST(TensorpipeSerialize, RecopySparseTensors) {
  // Take a 1K row of a 1M tensors, and make sure we don't send across 1M rows.
  constexpr size_t k1K = 1024;
  at::Tensor main = torch::randn({k1K, k1K});
  at::Tensor tiny = main.select(0, 2); // Select a row in the middle
  EXPECT_EQ(tiny.numel(), k1K);
  EXPECT_EQ(tiny.storage().nbytes() / tiny.itemsize(), k1K * k1K);

  std::vector<at::Tensor> tensors{main, tiny};
  std::vector<char> payload = {'1', '2', '3'};
  torch::distributed::rpc::MessageType mtype =
      torch::distributed::rpc::MessageType::UNKNOWN;
  auto sendingRpcMessage =
      c10::make_intrusive<torch::distributed::rpc::Message>(
          std::move(payload), std::move(tensors), mtype);

  tensorpipe::Message sendingTpMessage;
  torch::distributed::rpc::TensorpipeWriteBuffers tpBuffers;
  std::tie(sendingTpMessage, tpBuffers) =
      torch::distributed::rpc::tensorpipeSerialize(
          std::move(sendingRpcMessage), {}, {});

  EXPECT_EQ(tpBuffers.tensors.size(), 2);
  EXPECT_EQ(sendingTpMessage.tensors.size(), 2);
  EXPECT_TRUE(torch::equal(main, tpBuffers.tensors[0]));
  EXPECT_TRUE(torch::equal(tiny, tpBuffers.tensors[1]));
  // Test cloned storage
  EXPECT_EQ(
      main.storage().data(),
      sendingTpMessage.tensors[0].buffer.unwrap<tensorpipe::CpuBuffer>().ptr);
  EXPECT_NE(
      tiny.storage().data(),
      sendingTpMessage.tensors[1].buffer.unwrap<tensorpipe::CpuBuffer>().ptr);
  EXPECT_EQ(tiny.element_size() * k1K, sendingTpMessage.tensors[1].length);
}

TEST(TensorpipeSerialize, NoDeleterTensors) {
  std::vector<float> blob1{.8, .2};
  std::vector<float> blob2{.7, .5, .9};
  at::Tensor t1 = torch::from_blob((float*)(blob1.data()), blob1.size());
  at::Tensor t2 = torch::from_blob((float*)(blob2.data()), blob2.size());
  std::vector<at::Tensor> tensors{t1, t2};
  std::vector<char> payload = {'1', '2', '3'};
  torch::distributed::rpc::MessageType mtype =
      torch::distributed::rpc::MessageType::UNKNOWN;
  auto sendingRpcMessage =
      c10::make_intrusive<torch::distributed::rpc::Message>(
          std::move(payload), std::move(tensors), mtype);

  tensorpipe::Message sendingTpMessage;
  torch::distributed::rpc::TensorpipeWriteBuffers tpBuffers;
  std::tie(sendingTpMessage, tpBuffers) =
      torch::distributed::rpc::tensorpipeSerialize(
          std::move(sendingRpcMessage), {}, {});

  EXPECT_EQ(tpBuffers.copiedTensors.size(), 2);
  EXPECT_EQ(sendingTpMessage.tensors.size(), 2);
  EXPECT_EQ(
      tpBuffers.copiedTensors[0].size(), sendingTpMessage.tensors[0].length);
  EXPECT_EQ(
      tpBuffers.copiedTensors[1].size(), sendingTpMessage.tensors[1].length);
  EXPECT_EQ(
      tpBuffers.copiedTensors[0].data(),
      sendingTpMessage.tensors[0].buffer.unwrap<tensorpipe::CpuBuffer>().ptr);
  EXPECT_EQ(
      tpBuffers.copiedTensors[1].data(),
      sendingTpMessage.tensors[1].buffer.unwrap<tensorpipe::CpuBuffer>().ptr);
  EXPECT_TRUE(
      memcmp(
          tpBuffers.copiedTensors[0].data(),
          t1.storage().data(),
          sendingTpMessage.tensors[0].length) == 0);
  EXPECT_TRUE(
      memcmp(
          tpBuffers.copiedTensors[1].data(),
          t2.storage().data(),
          sendingTpMessage.tensors[1].length) == 0);
}