1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
# The purpose of this test is to check that we have implementation parity between
# a Python `torch.nn` module and its corresponding C++ `torch::nn` module. Concretely,
# this test does the following:
#
# 1. Get a test params dict from common_nn.py, run forward and backward on the
# Python module created using the test params.
#
# 2. Serialize the Python module's parameters / buffers and its forward input
# arguments, deserialize them in C++ and load them into the C++ module.
#
# 3. Run the same forward and backward passes on the C++ module, and serialize
# the C++ module's forward output and backward gradients.
#
# 4. Compare Python/C++ module's forward output and backward gradients. If they
# are the same, then we have implementation parity between Python/C++ module.
import tempfile
from string import Template
import types
import pprint
import os
import torch
from cpp_api_parity.utils import TorchNNModuleTestParams, TORCH_NN_COMMON_TEST_HARNESS, \
compile_cpp_code_inline, set_python_tensors_requires_grad, move_python_tensors_to_device, \
add_test, compute_cpp_args_construction_stmts_and_forward_arg_symbols, serialize_arg_dict_as_script_module, \
compute_arg_dict, decorate_test_fn, compute_temp_file_path, generate_error_msg, is_torch_nn_functional_test, \
try_remove_folder
from cpp_api_parity.sample_module import SAMPLE_MODULE_CPP_SOURCE
# Expected substitutions:
#
# ${module_variant_name} (e.g. `Linear_no_bias_cpu`)
# ${module_qualified_name} (e.g. `torch::nn::Linear`)
# ${cpp_args_construction_stmts}
# ${cpp_constructor_args}
# ${device}
# ${cpp_forward_args_symbols}
TORCH_NN_MODULE_TEST_FORWARD_BACKWARD = Template("""
void ${module_variant_name}_test_forward_backward(
const std::string& arg_dict_file_path,
const std::string& module_file_path,
const std::string& forward_output_file_path,
const std::string& backward_grad_dict_file_path) {
pybind11::gil_scoped_release no_gil;
// Declare arguments
auto arg_dict = load_dict_from_file(arg_dict_file_path);
${cpp_args_construction_stmts};
// Construct module and load params/buffers from Python module
${module_qualified_name} module${cpp_constructor_args};
module->to(std::string("${device}"));
torch::load(module, module_file_path);
// Some modules (such as `RReLU`) create random tensors in their forward pass.
// To make sure the random tensors created are the same in Python/C++, we need
// to set the RNG seed manually.
torch::manual_seed(0);
// Forward pass
auto cpp_output = module(${cpp_forward_args_symbols});
// Save the output into a file to be compared in Python later
write_ivalue_to_file(torch::IValue(cpp_output), forward_output_file_path);
// Backward pass
cpp_output.sum().backward();
// Put all gradients into a c10::Dict, save it into a file to be compared in Python later
c10::Dict<std::string, torch::Tensor> grad_dict;
for (const auto& param : module->named_parameters()) {
torch::Tensor grad = param.value().grad();
if (grad.is_sparse()) {
grad_dict.insert(param.key() + "_grad_indices", grad.coalesce().indices());
grad_dict.insert(param.key() + "_grad_values", grad.coalesce().values());
} else {
grad_dict.insert(param.key() + "_grad", grad);
}
}
write_ivalue_to_file(torch::IValue(grad_dict), backward_grad_dict_file_path);
}
""")
def run_python_forward_backward(unit_test_class, test_params):
device = test_params.device
module = test_params.test_instance.constructor(*test_params.test_instance.constructor_args).to(device)
inputs = set_python_tensors_requires_grad(move_python_tensors_to_device(
[arg_value for _, arg_value in test_params.arg_dict['input']], device))
inputs += move_python_tensors_to_device(
[arg_value for _, arg_value in test_params.arg_dict['target']], device)
inputs += move_python_tensors_to_device(
[arg_value for _, arg_value in test_params.arg_dict['extra_args']], device)
# Some modules (such as `RReLU`) create random tensors in their forward pass.
# To make sure the random tensors created are the same in Python/C++, we need
# to set the RNG seed manually.
torch.manual_seed(0)
# Forward pass
python_output = module(*inputs)
# NOTE: This is a workaround to allow any module to be traced.
# We can do this because we are only interested in transferring
# the Python module's parameters and buffers to the C++ module.
module.forward = types.MethodType(lambda self, input: input, module)
script_module = torch.jit.trace(module, torch.tensor(0))
# Backward pass
python_output.sum().backward()
# Put all gradients into a dict, to be compared later
python_grad_dict = {}
for name, param in module.named_parameters():
grad = param.grad
if grad.is_sparse:
python_grad_dict[name + "_grad_indices"] = grad.coalesce().indices()
python_grad_dict[name + "_grad_values"] = grad.coalesce().values()
else:
python_grad_dict[name + "_grad"] = grad
return script_module, python_output, python_grad_dict
def test_forward_backward(unit_test_class, test_params):
module_variant_name = test_params.module_variant_name
cpp_tmp_folder = test_params.cpp_tmp_folder
# Remove the temporary folder if it exists already
try_remove_folder(cpp_tmp_folder)
os.mkdir(cpp_tmp_folder)
# Run forward and backward on Python module
script_module, python_output, python_grad_dict = run_python_forward_backward(unit_test_class, test_params)
# Save Python module and arguments to be used from C++ function
module_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'module')
arg_dict_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'arg_dict')
script_module.save(module_file_path)
serialize_arg_dict_as_script_module(test_params.arg_dict).save(arg_dict_file_path)
cpp_test_name = '{}_test_forward_backward'.format(test_params.module_variant_name)
cpp_test_fn = getattr(unit_test_class.module_impl_check_cpp_module, cpp_test_name)
def run_cpp_test_fn_and_check_output():
forward_output_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'forward_output')
backward_grad_dict_file_path = compute_temp_file_path(cpp_tmp_folder, module_variant_name, 'backward_grad_dict')
cpp_test_fn(arg_dict_file_path, module_file_path, forward_output_file_path, backward_grad_dict_file_path)
cpp_output = torch.load(forward_output_file_path)
cpp_grad_dict = torch.load(backward_grad_dict_file_path)
# Check that forward outputs are equal
unit_test_class.assertEqual(python_output, cpp_output,
msg=generate_error_msg("forward output", cpp_output, python_output))
# Check that module parameter gradients are equal after backward pass
unit_test_class.assertEqual(
len(python_grad_dict), len(cpp_grad_dict),
msg=generate_error_msg("# of parameters", len(cpp_grad_dict), len(python_grad_dict)))
for key in python_grad_dict:
param_name = None
for suffix in ['_grad', '_grad_indices', '_grad_values']:
if key.endswith(suffix):
param_name = key[:-len(suffix)]
break
assert param_name is not None
sparsity_str = 'sparse' if key.endswith('_grad_indices') or key.endswith('_grad_values') else 'dense'
unit_test_class.assertTrue(
key in cpp_grad_dict,
msg=generate_error_msg(
"\"Does module have a parameter named `{}` with {} gradient?\"".format(param_name, sparsity_str),
False, True))
unit_test_class.assertEqual(
python_grad_dict[key], cpp_grad_dict[key],
msg=generate_error_msg(
"`{}`'s {} gradient (`{}`)".format(param_name, sparsity_str, key),
cpp_grad_dict[key], python_grad_dict[key]))
run_cpp_test_fn_and_check_output()
# Remove temporary folder that stores C++ outputs
try_remove_folder(cpp_tmp_folder)
def compute_module_name(test_params_dict):
fullname = test_params_dict.get('fullname', None)
if fullname:
module_name = fullname.split('_')[0]
else:
module_name = test_params_dict.get('module_name')
return module_name
def process_test_params_for_module(test_params_dict, device, test_instance_class):
module_name = compute_module_name(test_params_dict)
test_params_dict['constructor'] = test_params_dict.get('constructor', getattr(torch.nn, module_name))
test_instance = test_instance_class(**test_params_dict)
assert test_instance.get_name().startswith('test_')
# Example output: `BCELoss_weights_cuda`
module_variant_name = test_instance.get_name()[5:] + (('_' + device) if device != 'cpu' else '')
if 'constructor_args' in test_params_dict:
assert 'cpp_constructor_args' in test_params_dict, (
"If `constructor_args` is present in test params dict, to enable C++ API parity test, "
"`cpp_constructor_args` must be present in:\n{}"
"If you are interested in adding the C++ API parity test, please see:\n"
"NOTE [How to check NN module / functional API parity between Python and C++ frontends]. \n"
"If not, please add `test_cpp_api_parity=False` to the test params dict and file an issue about this."
).format(pprint.pformat(test_params_dict))
return TorchNNModuleTestParams(
module_name=module_name,
module_variant_name=module_variant_name,
test_instance=test_instance,
cpp_constructor_args=test_params_dict.get('cpp_constructor_args', ''),
arg_dict=compute_arg_dict(test_params_dict, test_instance),
has_parity=test_params_dict.get('has_parity', True),
device=device,
cpp_tmp_folder=tempfile.mkdtemp(),
)
def write_test_to_test_class(
unit_test_class, test_params_dict, test_instance_class, parity_table, devices):
assert not is_torch_nn_functional_test(test_params_dict)
module_name = compute_module_name(test_params_dict)
assert hasattr(torch.nn, module_name), (
"`torch.nn` doesn't have module `{}`. "
"If you are adding a new test, please set `fullname` using format `ModuleName_desc` "
"or set `module_name` using format `ModuleName` in the module test dict:\n{}"
).format(module_name, pprint.pformat(test_params_dict))
module_full_name = 'torch::nn::' + module_name
assert module_full_name in parity_table['torch::nn'], (
"Please add `{}` entry to `torch::nn` section of `test/cpp_api_parity/parity-tracker.md`. "
"(Discovered while processing\n{}.)").format(module_full_name, pprint.pformat(test_params_dict))
for device in devices:
test_params = process_test_params_for_module(
test_params_dict=test_params_dict,
device=device,
test_instance_class=test_instance_class,
)
try_remove_folder(test_params.cpp_tmp_folder)
unit_test_name = 'test_torch_nn_{}'.format(test_params.module_variant_name)
unit_test_class.module_test_params_map[unit_test_name] = test_params
def test_fn(self):
test_forward_backward(
unit_test_class=self, test_params=unit_test_class.module_test_params_map[self._testMethodName])
test_fn = decorate_test_fn(
test_fn=test_fn,
test_cuda=test_params_dict.get('test_cuda', True),
has_impl_parity=parity_table['torch::nn'][module_full_name][0] and
test_params_dict.get('has_parity', True),
device=device)
add_test(unit_test_class, unit_test_name, test_fn)
def generate_test_cpp_sources(test_params, template):
device = test_params.device
cpp_constructor_args = test_params.cpp_constructor_args
if cpp_constructor_args != '':
cpp_constructor_args = '({})'.format(cpp_constructor_args)
cpp_args_construction_stmts, cpp_forward_args_symbols = \
compute_cpp_args_construction_stmts_and_forward_arg_symbols(test_params)
test_cpp_sources = template.substitute(
module_variant_name=test_params.module_variant_name,
module_qualified_name='torch::nn::{}'.format(test_params.module_name),
cpp_args_construction_stmts=";\n ".join(cpp_args_construction_stmts),
cpp_constructor_args=cpp_constructor_args,
cpp_forward_args_symbols=", ".join(cpp_forward_args_symbols),
device=device,
)
return test_cpp_sources
# Build all C++ tests together, instead of once per test.
def build_cpp_tests(unit_test_class, print_cpp_source=False):
assert len(unit_test_class.module_test_params_map) > 0
cpp_sources = TORCH_NN_COMMON_TEST_HARNESS + SAMPLE_MODULE_CPP_SOURCE
functions = []
for test_name, test_params in unit_test_class.module_test_params_map.items():
cpp_sources += generate_test_cpp_sources(
test_params=test_params, template=TORCH_NN_MODULE_TEST_FORWARD_BACKWARD)
functions.append('{}_test_forward_backward'.format(test_params.module_variant_name))
if print_cpp_source:
print(cpp_sources)
cpp_module = compile_cpp_code_inline(
name='module_impl_check',
cpp_sources=cpp_sources,
functions=functions)
unit_test_class.module_impl_check_cpp_module = cpp_module
|