File: sample_module.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (103 lines) | stat: -rw-r--r-- 3,453 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch

'''
`SampleModule` is used by `test_cpp_api_parity.py` to test that Python / C++ API
parity test harness works for `torch.nn.Module` subclasses.

When `SampleModule.has_parity` is true, behavior of `forward` / `backward`
is the same as the C++ equivalent.

When `SampleModule.has_parity` is false, behavior of `forward` / `backward`
is different from the C++ equivalent.
'''

class SampleModule(torch.nn.Module):
    def __init__(self, has_parity, has_submodule):
        super(SampleModule, self).__init__()
        self.has_parity = has_parity
        if has_submodule:
            self.submodule = SampleModule(self.has_parity, False)

        self.has_submodule = has_submodule
        self.register_parameter('param', torch.nn.Parameter(torch.empty(3, 4)))

        self.reset_parameters()

    def reset_parameters(self):
        with torch.no_grad():
            self.param.fill_(1)

    def forward(self, x):
        submodule_forward_result = self.submodule(x) if hasattr(self, 'submodule') else 0
        if self.has_parity:
            return x + self.param * 2 + submodule_forward_result
        else:
            return x + self.param * 4 + submodule_forward_result + 3

torch.nn.SampleModule = SampleModule

SAMPLE_MODULE_CPP_SOURCE = """\n
namespace torch {
namespace nn {
struct C10_EXPORT SampleModuleOptions {
  SampleModuleOptions(bool has_parity, bool has_submodule) : has_parity_(has_parity), has_submodule_(has_submodule) {}

  TORCH_ARG(bool, has_parity);
  TORCH_ARG(bool, has_submodule);
};

struct C10_EXPORT SampleModuleImpl : public torch::nn::Cloneable<SampleModuleImpl> {
  explicit SampleModuleImpl(SampleModuleOptions options) : options(std::move(options)) {
    if (options.has_submodule()) {
      submodule = register_module(
        "submodule",
        std::make_shared<SampleModuleImpl>(SampleModuleOptions(options.has_parity(), false)));
    }
    reset();
  }
  void reset() {
    param = register_parameter("param", torch::ones({3, 4}));
  }
  torch::Tensor forward(torch::Tensor x) {
    return x + param * 2 + (submodule ? submodule->forward(x) : torch::zeros_like(x));
  }
  SampleModuleOptions options;
  torch::Tensor param;
  std::shared_ptr<SampleModuleImpl> submodule{nullptr};
};

TORCH_MODULE(SampleModule);
} // namespace nn
} // namespace torch
"""

module_tests = [
    dict(
        module_name='SampleModule',
        desc='has_parity',
        constructor_args=(True, True),
        cpp_constructor_args='torch::nn::SampleModuleOptions(true, true)',
        input_size=(3, 4),
        cpp_input_args=['torch::randn({3, 4})'],
        has_parity=True,
    ),
    dict(
        fullname='SampleModule_no_parity',
        constructor=lambda: SampleModule(has_parity=False, has_submodule=True),
        cpp_constructor_args='torch::nn::SampleModuleOptions(false, true)',
        input_size=(3, 4),
        cpp_input_args=['torch::randn({3, 4})'],
        has_parity=False,
    ),
    # This is to test that setting the `test_cpp_api_parity=False` flag skips
    # the C++ API parity test accordingly (otherwise this test would run and
    # throw a parity error).
    dict(
        fullname='SampleModule_THIS_TEST_SHOULD_BE_SKIPPED',
        constructor=lambda: SampleModule(False, True),
        cpp_constructor_args='torch::nn::SampleModuleOptions(false, true)',
        input_size=(3, 4),
        cpp_input_args=['torch::randn({3, 4})'],
        test_cpp_api_parity=False,
    ),
]