File: op.cpp

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (71 lines) | stat: -rw-r--r-- 2,236 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <c10/util/irange.h>
#include <torch/script.h>

#include "op.h"

#include <cstddef>
#include <string>

torch::List<torch::Tensor> custom_op(
    torch::Tensor tensor,
    double scalar,
    int64_t repeat) {
  torch::List<torch::Tensor> output;
  output.reserve(repeat);
  for (const auto i : c10::irange(repeat)) {
    (void)i; // Suppress unused variable warning
    output.push_back(tensor * scalar);
  }
  return output;
}

int64_t custom_op2(std::string s1, std::string s2) {
  return s1.compare(s2);
}

struct CustomOpAutogradFunction : public torch::autograd::Function<CustomOpAutogradFunction> {
  static torch::Tensor forward(
      torch::autograd::AutogradContext* ctx,
      torch::Tensor var1,
      int64_t mul,
      torch::Tensor var2,
      c10::optional<torch::Tensor> var3) {
    ctx->saved_data["mul"] = mul;
    ctx->saved_data["var3_has_value"] = var3.has_value();
    ctx->save_for_backward({var1, var2});
    if (var3) {
      return var1 + mul * var2 + var1 * var2 + var3.value();
    }
    return var1 + mul*var2 + var1*var2;
  }

  static torch::autograd::variable_list backward(torch::autograd::AutogradContext *ctx, torch::autograd::variable_list grad_output) {
    int mul = ctx->saved_data["mul"].toInt();
    bool var3_has_value = ctx->saved_data["var3_has_value"].toBool();
    auto saved = ctx->get_saved_variables();
    auto var1 = saved[0];
    auto var2 = saved[1];
    auto var3_grad = var3_has_value ? grad_output[0] : torch::Tensor();
    torch::autograd::variable_list output = {
        grad_output[0] + grad_output[0] * var2,
        torch::Tensor(),
        grad_output[0] * mul + grad_output[0] * var1,
        var3_grad};
    return output;
  }
};

torch::Tensor custom_op_with_autograd(
    torch::Tensor var1,
    int64_t mul,
    torch::Tensor var2,
    c10::optional<torch::Tensor> var3) {
  return CustomOpAutogradFunction::apply(var1, mul, var2, var3);
}

TORCH_LIBRARY_FRAGMENT(custom, m) {
    m.def("op", custom_op);
    m.def("op2", custom_op2);
    m.def("op_with_defaults(Tensor tensor, float scalar = 1, int repeat = 1) -> Tensor[]", custom_op);
    m.def("op_with_autograd(Tensor var1, int mul, Tensor var2, Tensor? var3=None) -> Tensor", custom_op_with_autograd);
}