1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
# Owner(s): ["oncall: distributed"]
import sys
from typing import Optional, List, cast
from torch.distributed._shard.checkpoint.storage import WriteResult
from torch.distributed._shard.checkpoint import (
StorageReader,
StorageWriter,
CheckpointException,
load_state_dict,
save_state_dict,
)
import torch
import torch.distributed as dist
import torch.nn
import torch.futures
from torch.futures import Future
from torch.distributed._shard import sharded_tensor
from torch.distributed._shard.checkpoint.default_planner import (
_create_default_local_metadata,
)
from torch.distributed._shard.checkpoint.metadata import (
BytesStorageMetadata,
Metadata,
TensorStorageMetadata,
)
from torch.distributed._shard.checkpoint.planner import (
SavePlan,
SavePlanner,
LoadPlan,
LoadPlanner,
)
from torch.distributed._shard.sharded_tensor import (
state_dict_hook,
ShardedTensor,
)
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class TestModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.sharded: ShardedTensor = sharded_tensor.zeros(self.spec(), 4, 4)
self.regular = torch.nn.Parameter(torch.ones(4, 4))
self.extra_sharded: Optional[ShardedTensor] = None
self.extra_param: Optional[torch.nn.Parameter] = None
self._register_state_dict_hook(state_dict_hook)
def spec(self) -> ChunkShardingSpec:
# pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
return ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
],
)
class TestDistributedCheckpointing(ShardedTensorTestBase):
@property
def world_size(self) -> int:
return 2
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(2)
@requires_nccl()
def test_tensor_metadata_with_missing_rank_spec(self) -> None:
spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:1/cuda:1",
],
)
st = sharded_tensor.zeros(spec, 4, 4, dtype=torch.float64)
mapping = {}
md = _create_default_local_metadata({"st": st})
st_md = md.state_dict_metadata["st"]
self.assertEqual(1, len(st_md.chunks))
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(2)
@requires_nccl()
def test_default_metadata(self) -> None:
device = f"cuda:{dist.get_rank()}"
spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
],
)
state_dict = {
'sharded': sharded_tensor.rand(spec, (10, 10, )),
'replicated': torch.rand(4, device=device),
'bytes': [1, 2, 3, 4],
}
metadata = _create_default_local_metadata(state_dict)
self.assertTrue('bytes' in metadata.state_dict_metadata)
self.assertIsInstance(metadata.state_dict_metadata['bytes'], BytesStorageMetadata)
self.assertTrue('replicated' in metadata.state_dict_metadata)
self.assertIsInstance(metadata.state_dict_metadata['replicated'], TensorStorageMetadata)
md = metadata.state_dict_metadata['replicated']
self.assertEqual(md.size, state_dict['replicated'].size())
self.assertEqual(md.properties.dtype, torch.float32)
self.assertEqual(1, len(md.chunks))
self.assertTrue('sharded' in metadata.state_dict_metadata)
self.assertIsInstance(metadata.state_dict_metadata['sharded'], TensorStorageMetadata)
md = metadata.state_dict_metadata['sharded']
self.assertEqual(md.properties.dtype, torch.float32)
self.assertEqual(md.size, state_dict['sharded'].size())
self.assertEqual(2, len(md.chunks))
class TestStorageBase:
def __init__(
self,
fail_conf
):
self.fail_conf = fail_conf
self.rank = 0 if not dist.is_initialized() else dist.get_rank()
def _get_ranks(self, name):
return self.fail_conf[name] if name in self.fail_conf else None
def _fail_rank(self, name):
ranks = self._get_ranks(name)
if ranks is not None and self.rank in ranks:
raise ValueError(f"rank fail {self.rank} for {name}")
def _fail_rank_async(self, name, result=None):
ranks = self._get_ranks(name)
fut = Future()
if ranks is not None and self.rank in ranks:
fut.set_exception(ValueError(f"async rank fail {self.rank} for {name}"))
else:
fut.set_result(result)
return fut
class FaultyStorageWriter(TestStorageBase, StorageWriter):
def __init__(
self,
fail_conf
):
super(FaultyStorageWriter, self).__init__(fail_conf)
def init(self, is_coordinator: bool) -> None:
self._fail_rank("fail_init")
def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
self._fail_rank("fail_prepare_local_plan")
return plan
def prepare_global_plan(self, plans: List[SavePlan]) -> List[SavePlan]:
self._fail_rank("fail_prepare_global_plan")
return plans
def write_data(
self,
plan: SavePlan,
planner: SavePlanner
) -> Future[List[WriteResult]]:
self._fail_rank("fail_write_data")
return self._fail_rank_async("fail_write_data_async", [])
def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
self._fail_rank("fail_finish")
class FaultyStorageReader(TestStorageBase, StorageReader):
def __init__(
self,
metadata,
fail_conf
):
super(FaultyStorageReader, self).__init__(fail_conf)
self.metadata = metadata
def init(self, metadata: Metadata, is_coordinator: bool) -> None:
self._fail_rank("fail_init")
def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
self._fail_rank("fail_prepare_local_plan")
return plan
def prepare_global_plan(self, plans: List[LoadPlan]) -> List[LoadPlan]:
self._fail_rank("fail_prepare_global_plan")
return plans
def read_data(
self,
plan: LoadPlan,
planner: LoadPlanner
) -> Future[None]:
self._fail_rank("fail_read_data")
return self._fail_rank_async("fail_read_data_async")
def read_metadata(self) -> Metadata:
self._fail_rank("fail_read_metadata")
return self.metadata
class TestDistributedFailure(ShardedTensorTestBase):
def get_spec(self):
return ChunkShardingSpec(
dim=0,
placements=[
f"rank:{r}/cuda:{r}" for r in range(dist.get_world_size())
]
)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(2)
@requires_nccl()
def test_dummy_writer_works(self) -> None:
state_dict = {
'sharded': sharded_tensor.rand(self.get_spec(), 20, 20),
'replicated': torch.rand(10, 10),
'bytes': [1, 2, 3, 4]
}
save_state_dict(state_dict, FaultyStorageWriter({}))
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(2)
@requires_nccl()
def test_dummy_reader_works(self) -> None:
state_dict = {
'sharded': sharded_tensor.rand(self.get_spec(), 20, 20),
'replicated': torch.rand(10, 10),
'bytes': [1, 2, 3, 4]
}
metadata = _create_default_local_metadata(state_dict)
load_state_dict(state_dict, FaultyStorageReader(metadata, {}))
def _test_dist_failure(self, callback, kwargs):
bad_ranks = list(kwargs.values())[0] if len(kwargs) > 0 else []
# Empty bad_ranks means it must work
if len(bad_ranks) == 0:
callback()
else:
with self.assertRaises(CheckpointException) as cm:
callback()
e = cast(CheckpointException, cm.exception)
for rank, wrapped_ex in e.failures.items():
ex = wrapped_ex[0]
self.assertTrue(rank in bad_ranks, msg=f"{rank} did not fail")
if not kwargs.get("ignore_exception_type", False):
self.assertEqual(ValueError, type(ex), str(ex))
failed_ranks = e.failures.keys()
for rank in bad_ranks:
self.assertTrue(rank in failed_ranks, msg=f"{rank} was supposed to fail was fine")
def _test_save(self, state_dict, coordinator=0, **kwargs):
no_dist = not dist.is_initialized()
def _save():
save_state_dict(
state_dict,
storage_writer=FaultyStorageWriter(kwargs),
coordinator_rank=coordinator,
no_dist=no_dist,
)
self._test_dist_failure(_save, kwargs)
def _test_load(self, state_dict, coordinator=0, **kwargs):
no_dist = not dist.is_initialized()
def _load():
metadata = _create_default_local_metadata(state_dict)
load_state_dict(
state_dict,
storage_reader=FaultyStorageReader(metadata, kwargs),
coordinator_rank=coordinator,
no_dist=no_dist,
)
self._test_dist_failure(_load, kwargs)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(4)
@requires_nccl()
def test_save_error_handling(self) -> None:
state_dict = {
'sharded': sharded_tensor.rand(self.get_spec(), 20, 20),
'replicated': torch.rand(10, 10),
'bytes': [1, 2, 3, 4]
}
self._test_save(state_dict, fail_init=[0])
self._test_save(state_dict, fail_finish=[0])
self._test_save(state_dict, fail_prepare_global_plan=[0])
self._test_save(state_dict, fail_prepare_local_plan=[0])
self._test_save(state_dict, fail_write_data=[2])
self._test_save(state_dict, fail_write_data_async=[3])
self._test_save(state_dict, coordinator=1, fail_init=[1])
self._test_save(state_dict, coordinator=1, fail_finish=[1])
def test_save_error_handling_no_dist(self) -> None:
state_dict = {
'replicated': torch.rand(10, 10),
'bytes': [1, 2, 3, 4]
}
self.assertFalse(dist.is_initialized())
self._test_save(state_dict, fail_init=[0])
self._test_save(state_dict, fail_finish=[0])
self._test_save(state_dict, fail_prepare_global_plan=[0])
self._test_save(state_dict, fail_prepare_local_plan=[0])
self._test_save(state_dict, fail_write_data=[0])
self._test_save(state_dict, fail_write_data_async=[0])
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(4)
@requires_nccl()
def test_load_error_handling(self) -> None:
state_dict = {
'sharded': sharded_tensor.rand(self.get_spec(), 20, 20),
'replicated': torch.rand(10, 10),
'bytes': [1, 2, 3, 4]
}
self._test_load(state_dict)
self._test_load(state_dict, fail_init=[0])
self._test_load(state_dict, fail_prepare_global_plan=[0])
self._test_load(state_dict, fail_read_metadata=[0])
self._test_load(state_dict, fail_prepare_local_plan=[1])
self._test_load(state_dict, fail_read_data=[3])
self._test_load(state_dict, fail_read_data_async=[1])
self._test_load(state_dict, coordinator=3, fail_init=[0])
self._test_load(state_dict, coordinator=1, fail_read_metadata=[3])
self._test_load(state_dict, coordinator=2, fail_read_data=[0])
self._test_load(state_dict, coordinator=3, fail_read_data_async=[2])
self._test_load(state_dict, coordinator=1, fail_prepare_global_plan=[1])
def test_load_error_handling_no_dist(self) -> None:
state_dict = {
'replicated': torch.rand(10, 10),
'bytes': [1, 2, 3, 4]
}
self._test_load(state_dict)
self._test_load(state_dict, fail_init=[0])
self._test_load(state_dict, fail_read_metadata=[0])
self._test_load(state_dict, fail_prepare_local_plan=[0])
self._test_load(state_dict, fail_prepare_global_plan=[0])
self._test_load(state_dict, fail_read_data=[0])
self._test_load(state_dict, fail_read_data_async=[0])
if __name__ == "__main__":
run_tests()
|