File: test_file_system_checkpoint.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (487 lines) | stat: -rw-r--r-- 16,869 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# Owner(s): ["oncall: distributed"]

import os
import shutil
import tempfile
from typing import Dict

import torch
import torch.distributed as dist
from torch.distributed._shard import sharded_tensor
from torch.distributed._shard.sharded_tensor import ShardedTensor, state_dict_hook
from torch.distributed._shard.sharding_spec import (
    ChunkShardingSpec,
    EnumerableShardingSpec,
    ShardingSpec,
    ShardMetadata,
)
from torch.testing._internal.common_distributed import requires_nccl, skip_if_lt_x_gpu
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.distributed._shard.sharded_tensor import (
    ShardedTensorTestBase,
    with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
    MyShardedModel1
)


from torch.testing._internal.common_utils import (
    TEST_WITH_DEV_DBG_ASAN,
    run_tests,
)

from torch.distributed._shard.checkpoint import (
    FileSystemReader,
    FileSystemWriter,
    load_state_dict,
    save_state_dict,
)


if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


def assert_state_dict_equal(
    self: TestCase,
    state_dict_1: Dict[str, torch.Tensor],
    state_dict_2: Dict[str, torch.Tensor],
) -> bool:
    self.assertEqual(
        len(state_dict_1), len(state_dict_2), "state_dict must be the same size"
    )
    self.assertEqual(
        set(state_dict_1.keys()),
        set(state_dict_2.keys()),
        "state_dict keys do not match",
    )

    for key, value_1 in state_dict_1.items():
        value_2 = state_dict_2[key]
        if isinstance(value_1, ShardedTensor):
            for local_shard_1, local_shard_2 in zip(
                value_1.local_shards(), value_2.local_shards()
            ):
                self.assertTrue(
                    torch.equal(local_shard_1.tensor, local_shard_1.tensor),
                    f"Key {key}'s shard does not match",
                )
        elif isinstance(value_1, torch.Tensor):
            self.assertTrue(
                torch.equal(value_1, value_2), f"Key {key}'s tensor does not match"
            )

    return True


class MyTestModule(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.linear_1 = torch.nn.Linear(5, 5)
        self.linear_2 = torch.nn.Linear(5, 1)
        self.emb = torch.nn.EmbeddingBag(5, 10)


# The ShardedModels are borrowed from test/distributed/_sharded_tensor/test_sharded_tensor.py
class MyShardedModel3(torch.nn.Module):
    def __init__(
        self,
        spec: ShardingSpec,
    ) -> None:
        super(MyShardedModel3, self).__init__()
        self.sharded_tensor: ShardedTensor = sharded_tensor.rand(
            spec, 10, 20, init_rrefs=False
        )


class TestDistributedStateDictSaveLoad(TestCase):
    def test_read_write_only_tensor(self) -> None:
        with tempfile.TemporaryDirectory() as path:
            state_dict_to_save = MyTestModule().state_dict()

            fs_writer = FileSystemWriter(path=path)
            save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer, no_dist=True)

            state_dict_to_load_to = MyTestModule().state_dict()

            with self.assertRaises(AssertionError):
                assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)

            # Load from file without any resharding
            fs_reader = FileSystemReader(path=path)
            load_state_dict(state_dict=state_dict_to_load_to, storage_reader=fs_reader, no_dist=True)

            assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)

        with tempfile.TemporaryDirectory() as path:
            state_dict_to_save = MyTestModule().state_dict()

            fs_writer = FileSystemWriter(path=path, single_file_per_rank=True)
            save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer, no_dist=True)

            state_dict_to_load_to = MyTestModule().state_dict()

            with self.assertRaises(AssertionError):
                assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)

            # Load from file without any resharding
            fs_reader = FileSystemReader(path=path)
            load_state_dict(state_dict=state_dict_to_load_to, storage_reader=fs_reader, no_dist=True)

            assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)


class TestDistributedStateDictSaveLoadWithSharedTensor(ShardedTensorTestBase):
    @property
    def world_size(self) -> int:
        return 2

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(2)
    @requires_nccl()
    def test_read_write_shard_tensor(self) -> None:
        paths = [tempfile.mkdtemp()]
        dist.broadcast_object_list(paths)

        path = paths[0]

        # pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
        spec = ChunkShardingSpec(
            dim=0,
            placements=[
                "rank:0/cuda:0",
                "rank:1/cuda:1",
            ],
        )

        model_to_save = MyShardedModel1(spec, init_rrefs=False)

        # Test save
        model_to_save._register_state_dict_hook(state_dict_hook)
        state_dict_to_save = model_to_save.state_dict()

        fs_writer = FileSystemWriter(path=path)
        save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer)

        dist.barrier()

        # Create a new model
        model_to_load = MyShardedModel1(spec, init_rrefs=False)
        # This is not the correct hook for loading the state dict
        # model_to_load._register_load_state_dict_pre_hook(pre_load_state_dict_hook, True)
        model_to_load._register_state_dict_hook(state_dict_hook)
        state_dict_to_load_to = model_to_load.state_dict()

        dist.barrier()

        with self.assertRaises(AssertionError):
            assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)

        # Test load.
        fs_reader = FileSystemReader(path=path)
        load_state_dict(state_dict=state_dict_to_load_to, storage_reader=fs_reader)

        assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)
        dist.barrier()


class TestDistributedReshardOnLoad(ShardedTensorTestBase):
    @property
    def world_size(self) -> int:
        return 2

    def get_file_path(self) -> str:
        paths = [tempfile.mkdtemp()] if dist.get_rank() == 0 else [None]
        dist.broadcast_object_list(paths)
        return paths[0]

    def load_tensor(self, tensor: ShardedTensor) -> torch.Tensor:
        res = torch.zeros(tensor.shape, device="cuda:0") if dist.get_rank() == 0 else None
        tensor.gather(out=res)
        return res

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(2)
    @requires_nccl()
    def test_load_with_different_shard_plan(self) -> None:
        path = self.get_file_path()

        # We hardcode the assumption of how many shards are around
        self.assertEqual(self.world_size, dist.get_world_size())

        specs = [
            # pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
            ChunkShardingSpec(
                dim=0,
                placements=[
                    "rank:0/cuda:0",
                    "rank:1/cuda:1",
                ],
            ),
            # pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
            ChunkShardingSpec(
                dim=0,
                placements=[
                    "rank:0/cuda:0",
                    "rank:1/cuda:1",
                    "rank:1/cuda:1",
                    "rank:0/cuda:0",
                ],
            ),
            # This requires the tensors to be [10, 20]
            EnumerableShardingSpec(
                shards=[
                    ShardMetadata(
                        shard_offsets=[0, 0],
                        shard_sizes=[2, 20],
                        placement="rank:0/cuda:0",
                    ),
                    ShardMetadata(
                        shard_offsets=[2, 0],
                        shard_sizes=[1, 20],
                        placement="rank:1/cuda:1",
                    ),
                    ShardMetadata(
                        shard_offsets=[3, 0],
                        shard_sizes=[3, 20],
                        placement="rank:0/cuda:0",
                    ),
                    ShardMetadata(
                        shard_offsets=[6, 0],
                        shard_sizes=[3, 20],
                        placement="rank:1/cuda:1",
                    ),
                    ShardMetadata(
                        shard_offsets=[9, 0],
                        shard_sizes=[1, 20],
                        placement="rank:0/cuda:0",
                    ),
                ]
            ),
            # This requires the tensors to be [10, 20]
            EnumerableShardingSpec(
                shards=[
                    ShardMetadata(
                        shard_offsets=[0, 0],
                        shard_sizes=[8, 20],
                        placement="rank:1/cuda:1",
                    ),
                    ShardMetadata(
                        shard_offsets=[8, 0],
                        shard_sizes=[2, 20],
                        placement="rank:0/cuda:0",
                    ),
                ]
            ),
        ]

        for s0 in specs:
            for s1 in specs:
                if s0 == s1:
                    continue

                if dist.get_rank() == 0:
                    shutil.rmtree(path, ignore_errors=True)
                    os.makedirs(path)
                dist.barrier()

                model_to_save = MyShardedModel3(s0)
                model_to_save._register_state_dict_hook(state_dict_hook)
                state_dict_to_save = model_to_save.state_dict()

                fs_writer = FileSystemWriter(path=path)
                save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer)

                dist.barrier()

                model_to_load = MyShardedModel3(s1)
                model_to_load._register_state_dict_hook(state_dict_hook)
                state_dict_to_load_to = model_to_load.state_dict()
                dist.barrier()

                fs_reader = FileSystemReader(path=path)
                load_state_dict(
                    state_dict=state_dict_to_load_to, storage_reader=fs_reader
                )

                dist.barrier()
                store_tensor = self.load_tensor(model_to_save.sharded_tensor)
                dist.barrier()
                load_tensor = self.load_tensor(model_to_load.sharded_tensor)

                if dist.get_rank() == 0:
                    self.assertTrue(
                        torch.allclose(store_tensor, load_tensor), msg=f"{s0} vs {s1}"
                    )

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(2)
    @requires_nccl()
    def test_load_rowwise_to_colwise(self) -> None:
        path = self.get_file_path()
        self.assertEqual(self.world_size, dist.get_world_size())

        # pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
        src_spec = ChunkShardingSpec(
            dim=0,
            placements=[
                "rank:0/cuda:0",
                "rank:1/cuda:1",
            ],
        )

        # pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
        dst_spec = ChunkShardingSpec(
            dim=1,
            placements=[
                "rank:0/cuda:0",
                "rank:1/cuda:1",
            ],
        )

        if dist.get_rank() == 0:
            shutil.rmtree(path, ignore_errors=True)
            os.makedirs(path)

        model_to_save = MyShardedModel3(src_spec).cuda(dist.get_rank())
        model_to_save._register_state_dict_hook(state_dict_hook)
        state_dict_to_save = model_to_save.state_dict()

        fs_writer = FileSystemWriter(path=path)
        save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer)

        model_to_load = MyShardedModel3(dst_spec).cuda(dist.get_rank())
        model_to_load._register_state_dict_hook(state_dict_hook)
        state_dict_to_load_to = model_to_load.state_dict()

        fs_reader = FileSystemReader(path=path)

        load_state_dict(state_dict=state_dict_to_load_to, storage_reader=fs_reader)

        # We can't use torch.allclose since each ST has a different sharding spec
        store_tensor = self.load_tensor(model_to_save.sharded_tensor)
        load_tensor = self.load_tensor(model_to_load.sharded_tensor)

        if dist.get_rank() == 0:
            self.assertTrue(torch.allclose(store_tensor, load_tensor))


    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(2)
    @requires_nccl()
    def test_save_load_bytes(self) -> None:
        path = self.get_file_path()

        state_dict_to_save = {
            'bytes0': [1],
            'bytes1': 'string'
        }

        fs_writer = FileSystemWriter(path=path)
        save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer)

        state_dict_to_load = {
            'bytes0': [2],
            'bytes1': 'other'
        }

        fs_reader = FileSystemReader(path=path)
        load_state_dict(state_dict=state_dict_to_load, storage_reader=fs_reader)

        self.assertEqual([1], state_dict_to_load['bytes0'])
        self.assertEqual('string', state_dict_to_load['bytes1'])


    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(2)
    @requires_nccl()
    def test_switch_between_sharded_tensor_to_tensor(self) -> None:
        path = self.get_file_path()
        tensor_size = 32

        specs = [
            ChunkShardingSpec(
                dim=0,
                placements=[
                    "rank:0/cuda:0",
                    "rank:1/cuda:1",
                ],
            ),
            ChunkShardingSpec(
                dim=0,
                placements=[
                    "rank:0/cuda:0",
                    "rank:1/cuda:1",
                    "rank:1/cuda:1",
                    "rank:0/cuda:0",
                ],
            ),
            EnumerableShardingSpec(
                shards=[
                    ShardMetadata(
                        shard_offsets=[0],
                        shard_sizes=[8],
                        placement="rank:1/cuda:1",
                    ),
                    ShardMetadata(
                        shard_offsets=[8],
                        shard_sizes=[tensor_size - 8],
                        placement="rank:0/cuda:0",
                    ),
                ]
            ),
            EnumerableShardingSpec(
                shards=[
                    ShardMetadata(
                        shard_offsets=[0],
                        shard_sizes=[10],
                        placement="rank:0/cuda:0",
                    ),
                    ShardMetadata(
                        shard_offsets=[10],
                        shard_sizes=[tensor_size - 10],
                        placement="rank:1/cuda:1",
                    ),
                ]
            ),
        ]

        for save_spec in specs:
            for load_spec in specs:
                save_dict = {
                    'sharded': sharded_tensor.rand(save_spec, tensor_size),
                    'replicated': torch.rand(tensor_size, device=self.rank)
                }

                fs_writer = FileSystemWriter(path=path)
                save_state_dict(state_dict=save_dict, storage_writer=fs_writer)

                # Freaky Friday the tensors
                load_dict = {
                    'sharded': torch.zeros(tensor_size, device=self.rank),
                    'replicated': sharded_tensor.zeros(load_spec, tensor_size)
                }

                fs_reader = FileSystemReader(path=path)
                load_state_dict(state_dict=load_dict, storage_reader=fs_reader)

                save_dict_sharded = self.load_tensor(save_dict['sharded'])
                load_dict_replicated = self.load_tensor(load_dict['replicated'])

                if dist.get_rank() == 0:
                    self.assertTrue(
                        torch.allclose(save_dict_sharded, load_dict['sharded']),
                        f"save-spec {save_spec} load-spec {load_spec}"
                    )
                    self.assertTrue(
                        torch.allclose(save_dict['replicated'], load_dict_replicated),
                        f"save-spec {save_spec} load-spec {load_spec}"
                    )

if __name__ == "__main__":
    run_tests()