1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
# Owner(s): ["oncall: distributed"]
import sys
import os
import shutil
import tempfile
from typing import Dict
import torch
import torch.distributed as dist
from torch.distributed._shard import sharded_tensor
from torch.distributed._shard.sharded_tensor import ShardedTensor, state_dict_hook
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
ShardingSpec,
ShardMetadata,
)
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
MyShardedModel1
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
)
from torch.distributed._shard.checkpoint import (
FileSystemReader,
FileSystemWriter,
load_state_dict,
save_state_dict,
)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
def assert_state_dict_equal(
self: TestCase,
state_dict_1: Dict[str, torch.Tensor],
state_dict_2: Dict[str, torch.Tensor],
) -> bool:
self.assertEqual(
len(state_dict_1), len(state_dict_2), "state_dict must be the same size"
)
self.assertEqual(
set(state_dict_1.keys()),
set(state_dict_2.keys()),
"state_dict keys do not match",
)
for key, value_1 in state_dict_1.items():
value_2 = state_dict_2[key]
if isinstance(value_1, ShardedTensor):
for local_shard_1, local_shard_2 in zip(
value_1.local_shards(), value_2.local_shards()
):
self.assertTrue(
torch.equal(local_shard_1.tensor, local_shard_1.tensor),
f"Key {key}'s shard does not match",
)
elif isinstance(value_1, torch.Tensor):
self.assertTrue(
torch.equal(value_1, value_2), f"Key {key}'s tensor does not match"
)
return True
class MyTestModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear_1 = torch.nn.Linear(5, 5)
self.linear_2 = torch.nn.Linear(5, 1)
self.emb = torch.nn.EmbeddingBag(5, 10)
# The ShardedModels are borrowed from test/distributed/_sharded_tensor/test_sharded_tensor.py
class MyShardedModel3(torch.nn.Module):
def __init__(
self,
spec: ShardingSpec,
) -> None:
super(MyShardedModel3, self).__init__()
self.sharded_tensor: ShardedTensor = sharded_tensor.rand(
spec, 10, 20, init_rrefs=False
)
class TestDistributedStateDictSaveLoad(TestCase):
def test_read_write_only_tensor(self) -> None:
with tempfile.TemporaryDirectory() as path:
state_dict_to_save = MyTestModule().state_dict()
fs_writer = FileSystemWriter(path=path)
save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer, no_dist=True)
state_dict_to_load_to = MyTestModule().state_dict()
with self.assertRaises(AssertionError):
assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)
# Load from file without any resharding
fs_reader = FileSystemReader(path=path)
load_state_dict(state_dict=state_dict_to_load_to, storage_reader=fs_reader, no_dist=True)
assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)
class TestDistributedStateDictSaveLoadWithSharedTensor(ShardedTensorTestBase):
@property
def world_size(self) -> int:
return 2
@with_comms(init_rpc=False, backend="gloo")
def test_read_write_shard_tensor(self) -> None:
paths = [tempfile.mkdtemp()]
dist.broadcast_object_list(paths)
path = paths[0]
# pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0",
"rank:1",
],
)
model_to_save = MyShardedModel1(spec, init_rrefs=False)
# Test save
model_to_save._register_state_dict_hook(state_dict_hook)
state_dict_to_save = model_to_save.state_dict()
fs_writer = FileSystemWriter(path=path)
save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer)
dist.barrier()
# Create a new model
model_to_load = MyShardedModel1(spec, init_rrefs=False)
# This is not the correct hook for loading the state dict
# model_to_load._register_load_state_dict_pre_hook(pre_load_state_dict_hook, True)
model_to_load._register_state_dict_hook(state_dict_hook)
state_dict_to_load_to = model_to_load.state_dict()
dist.barrier()
with self.assertRaises(AssertionError):
assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)
# Test load.
fs_reader = FileSystemReader(path=path)
load_state_dict(state_dict=state_dict_to_load_to, storage_reader=fs_reader)
assert_state_dict_equal(self, state_dict_to_load_to, state_dict_to_save)
dist.barrier()
class TestDistributedReshardOnLoad(ShardedTensorTestBase):
@property
def world_size(self) -> int:
return 2
def get_file_path(self) -> str:
paths = [tempfile.mkdtemp()] if dist.get_rank() == 0 else [None]
dist.broadcast_object_list(paths)
return paths[0]
def load_tensor(self, tensor: ShardedTensor) -> torch.Tensor:
res = torch.zeros(tensor.shape, device="cpu") if dist.get_rank() == 0 else None
tensor.gather(out=res)
return res
@with_comms(init_rpc=False, backend="gloo")
def test_load_with_different_shard_plan(self) -> None:
path = self.get_file_path()
# We hardcode the assumption of how many shards are around
self.assertEqual(self.world_size, dist.get_world_size())
specs = [
# pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
ChunkShardingSpec(
dim=0,
placements=[
"rank:0",
"rank:1",
],
),
# pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
ChunkShardingSpec(
dim=0,
placements=[
"rank:0",
"rank:1",
"rank:1",
"rank:0",
],
),
# This requires the tensors to be [10, 20]
EnumerableShardingSpec(
shards=[
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[2, 20],
placement="rank:0",
),
ShardMetadata(
shard_offsets=[2, 0],
shard_sizes=[1, 20],
placement="rank:1",
),
ShardMetadata(
shard_offsets=[3, 0],
shard_sizes=[3, 20],
placement="rank:0",
),
ShardMetadata(
shard_offsets=[6, 0],
shard_sizes=[3, 20],
placement="rank:1",
),
ShardMetadata(
shard_offsets=[9, 0],
shard_sizes=[1, 20],
placement="rank:0",
),
]
),
# This requires the tensors to be [10, 20]
EnumerableShardingSpec(
shards=[
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[8, 20],
placement="rank:1",
),
ShardMetadata(
shard_offsets=[8, 0],
shard_sizes=[2, 20],
placement="rank:0",
),
]
),
]
for s0 in specs:
for s1 in specs:
if s0 == s1:
continue
if dist.get_rank() == 0:
shutil.rmtree(path, ignore_errors=True)
os.makedirs(path)
dist.barrier()
model_to_save = MyShardedModel3(s0)
model_to_save._register_state_dict_hook(state_dict_hook)
state_dict_to_save = model_to_save.state_dict()
fs_writer = FileSystemWriter(path=path)
save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer)
dist.barrier()
model_to_load = MyShardedModel3(s1)
model_to_load._register_state_dict_hook(state_dict_hook)
state_dict_to_load_to = model_to_load.state_dict()
dist.barrier()
fs_reader = FileSystemReader(path=path)
load_state_dict(
state_dict=state_dict_to_load_to, storage_reader=fs_reader
)
dist.barrier()
store_tensor = self.load_tensor(model_to_save.sharded_tensor)
dist.barrier()
load_tensor = self.load_tensor(model_to_load.sharded_tensor)
if dist.get_rank() == 0:
self.assertTrue(
torch.allclose(store_tensor, load_tensor), msg=f"{s0} vs {s1}"
)
@with_comms(init_rpc=False, backend="gloo")
def test_load_rowwise_to_colwise(self) -> None:
path = self.get_file_path()
self.assertEqual(self.world_size, dist.get_world_size())
# pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
src_spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0",
"rank:1",
],
)
# pyre-fixme [28]: Unexpected keyword argument `dim` to call `dist._sharding_spec.api.ChunkShardingSpec.__init__`.
dst_spec = ChunkShardingSpec(
dim=1,
placements=[
"rank:0",
"rank:1",
],
)
if dist.get_rank() == 0:
shutil.rmtree(path, ignore_errors=True)
os.makedirs(path)
model_to_save = MyShardedModel3(src_spec).cuda(dist.get_rank())
model_to_save._register_state_dict_hook(state_dict_hook)
state_dict_to_save = model_to_save.state_dict()
fs_writer = FileSystemWriter(path=path)
save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer)
model_to_load = MyShardedModel3(dst_spec).cuda(dist.get_rank())
model_to_load._register_state_dict_hook(state_dict_hook)
state_dict_to_load_to = model_to_load.state_dict()
fs_reader = FileSystemReader(path=path)
load_state_dict(state_dict=state_dict_to_load_to, storage_reader=fs_reader)
# We can't use torch.allclose since each ST has a different sharding spec
store_tensor = self.load_tensor(model_to_save.sharded_tensor)
load_tensor = self.load_tensor(model_to_load.sharded_tensor)
if dist.get_rank() == 0:
self.assertTrue(torch.allclose(store_tensor, load_tensor))
@with_comms(init_rpc=False, backend="gloo")
def test_save_load_bytes(self) -> None:
path = self.get_file_path()
state_dict_to_save = {
'bytes0': [1],
'bytes1': 'string'
}
fs_writer = FileSystemWriter(path=path)
save_state_dict(state_dict=state_dict_to_save, storage_writer=fs_writer)
state_dict_to_load = {
'bytes0': [2],
'bytes1': 'other'
}
fs_reader = FileSystemReader(path=path)
load_state_dict(state_dict=state_dict_to_load, storage_reader=fs_reader)
self.assertEqual([1], state_dict_to_load['bytes0'])
self.assertEqual('string', state_dict_to_load['bytes1'])
@with_comms(init_rpc=False, backend="gloo")
def test_switch_between_sharded_tensor_to_tensor(self) -> None:
path = self.get_file_path()
tensor_size = 32
specs = [
ChunkShardingSpec(
dim=0,
placements=[
"rank:0",
"rank:1",
],
),
ChunkShardingSpec(
dim=0,
placements=[
"rank:0",
"rank:1",
"rank:1",
"rank:0",
],
),
EnumerableShardingSpec(
shards=[
ShardMetadata(
shard_offsets=[0],
shard_sizes=[8],
placement="rank:1",
),
ShardMetadata(
shard_offsets=[8],
shard_sizes=[tensor_size - 8],
placement="rank:0",
),
]
),
EnumerableShardingSpec(
shards=[
ShardMetadata(
shard_offsets=[0],
shard_sizes=[10],
placement="rank:0",
),
ShardMetadata(
shard_offsets=[10],
shard_sizes=[tensor_size - 10],
placement="rank:1",
),
]
),
]
for save_spec in specs:
for load_spec in specs:
save_dict = {
'sharded': sharded_tensor.rand(save_spec, tensor_size),
'replicated': torch.rand(tensor_size, device=f"cpu:{self.rank}")
}
fs_writer = FileSystemWriter(path=path)
save_state_dict(state_dict=save_dict, storage_writer=fs_writer)
# Freaky Friday the tensors
load_dict = {
'sharded': torch.zeros(tensor_size, device=f"cpu:{self.rank}"),
'replicated': sharded_tensor.zeros(load_spec, tensor_size)
}
fs_reader = FileSystemReader(path=path)
load_state_dict(state_dict=load_dict, storage_reader=fs_reader)
save_dict_sharded = self.load_tensor(save_dict['sharded'])
load_dict_replicated = self.load_tensor(load_dict['replicated'])
if dist.get_rank() == 0:
self.assertTrue(
torch.allclose(save_dict_sharded, load_dict['sharded']),
f"save-spec {save_spec} load-spec {load_spec}"
)
self.assertTrue(
torch.allclose(save_dict['replicated'], load_dict_replicated),
f"save-spec {save_spec} load-spec {load_spec}"
)
if __name__ == "__main__":
run_tests()
|