1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
# Owner(s): ["oncall: distributed"]
import torch
import torch.optim as optim
from torch.distributed._shard import (
sharded_tensor,
shard_parameter
)
from copy import deepcopy
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
)
from torch.distributed._shard.sharded_optim import (
ShardedOptimizer,
)
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
run_tests,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
class MyShardedModel(torch.nn.Module):
def __init__(self, spec=None, group=None):
super(MyShardedModel, self).__init__()
# Use same seed.
torch.manual_seed(0)
self.param = torch.nn.Parameter(torch.rand(5, 10))
if spec is not None:
self.sharded_param = torch.nn.Parameter(sharded_tensor.rand(spec, 20, 10, requires_grad=True, process_group=group))
else:
self.sharded_param = torch.nn.Parameter(torch.rand(5, 10))
def forward(self, input):
if isinstance(self.sharded_param, sharded_tensor.ShardedTensor):
return self.param + self.sharded_param.local_shards()[0].tensor + input
else:
return self.sharded_param + self.param + input
class MyShardedLinear(torch.nn.Module):
def __init__(self, rank=None):
super(MyShardedLinear, self).__init__()
# Use same seed.
torch.manual_seed(0)
self.linear1 = torch.nn.Linear(17, 12)
self.linear2 = torch.nn.Linear(12, 29)
self.gelu = torch.nn.GELU()
if rank:
self.linear1.cuda(rank)
self.linear2.cuda(rank)
def shard_parameter(self):
rowwise_sharding_spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
colwise_sharding_spec = ChunkShardingSpec(
dim=1,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
shard_parameter(self.linear1, "weight", rowwise_sharding_spec)
shard_parameter(self.linear2, "weight", colwise_sharding_spec)
def forward(self, inp):
return self.linear2(self.gelu(self.linear1(inp)))
class TestShardedOptimizer(ShardedTensorTestBase):
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(4)
@requires_nccl()
def test_sharded_optim(self):
rowwise_spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
local_model = MyShardedModel().cuda()
sharded_model = MyShardedModel(spec=rowwise_spec).cuda()
# copy the parameteres from local model
sharded_model.sharded_param.local_shards()[0].tensor = \
local_model.sharded_param.detach().clone().requires_grad_()
local_optim = optim.SGD(local_model.parameters(), lr=0.1)
sharded_model_params = dict(sharded_model.named_parameters())
sharded_optim = ShardedOptimizer(sharded_model_params, optim.SGD, lr=0.1)
local_optim.zero_grad()
sharded_optim.zero_grad()
before_update = deepcopy(sharded_optim.named_params)
inp = torch.rand([5, 10]).cuda(self.rank).requires_grad_()
# run forward
local_output = local_model(inp)
sharded_output = sharded_model(inp)
# backward
local_output.sum().backward()
sharded_output.sum().backward()
# optimizer update
local_optim.step()
sharded_optim.step()
# make sure the parameters (including sharded param)
# get updated by the optimizer, and the updated
# local params are the same as the sharded params
for key, val in before_update.items():
new_val = sharded_optim.named_params[key]
if isinstance(val, sharded_tensor.ShardedTensor):
self.assertNotEqual(
val.local_shards()[0].tensor,
new_val.local_shards()[0].tensor
)
self.assertEqual(
new_val.local_shards()[0].tensor,
local_model.sharded_param
)
else:
self.assertNotEqual(val, new_val)
self.assertEqual(new_val, local_model.param)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(4)
@requires_nccl()
def test_named_params_with_sharded_tensor(self):
rowwise_spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
sharded_model = MyShardedModel(spec=rowwise_spec).cuda()
sharded_model_params = dict(sharded_model.named_parameters())
param_keys = list(sharded_model_params.keys())
self.assertEqual(len(param_keys), 2)
self.assertTrue("param" in param_keys)
self.assertTrue("sharded_param" in param_keys)
sharded_linear = MyShardedLinear(rank=self.rank).cuda()
sharded_linear.shard_parameter()
sharded_linear_params = dict(sharded_linear.named_parameters())
param_keys = list(sharded_linear_params.keys())
self.assertEqual(len(param_keys), 4)
self.assertTrue("linear1.bias" in param_keys)
self.assertTrue("linear2.bias" in param_keys)
self.assertTrue("linear1.weight" in param_keys)
self.assertTrue("linear2.weight" in param_keys)
self.assertFalse("bias" in param_keys)
if __name__ == '__main__':
run_tests()
|