File: test_sharded_optim.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (183 lines) | stat: -rw-r--r-- 6,033 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Owner(s): ["oncall: distributed"]

import torch
import torch.optim as optim
from torch.distributed._shard import (
    sharded_tensor,
    shard_parameter
)

from copy import deepcopy
from torch.distributed._shard.sharding_spec import (
    ChunkShardingSpec,
)
from torch.distributed._shard.sharded_optim import (
    ShardedOptimizer,
)
from torch.testing._internal.common_distributed import (
    requires_nccl,
    skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
    run_tests,
)

from torch.testing._internal.distributed._shard.sharded_tensor import (
    ShardedTensorTestBase,
    with_comms,
)

class MyShardedModel(torch.nn.Module):
    def __init__(self, spec=None, group=None):
        super(MyShardedModel, self).__init__()
        # Use same seed.
        torch.manual_seed(0)
        self.param = torch.nn.Parameter(torch.rand(5, 10))
        if spec is not None:
            self.sharded_param = torch.nn.Parameter(sharded_tensor.rand(spec, 20, 10, requires_grad=True, process_group=group))
        else:
            self.sharded_param = torch.nn.Parameter(torch.rand(5, 10))

    def forward(self, input):
        if isinstance(self.sharded_param, sharded_tensor.ShardedTensor):
            return self.param + self.sharded_param.local_shards()[0].tensor + input
        else:
            return self.sharded_param + self.param + input


class MyShardedLinear(torch.nn.Module):
    def __init__(self, rank=None):
        super(MyShardedLinear, self).__init__()
        # Use same seed.
        torch.manual_seed(0)
        self.linear1 = torch.nn.Linear(17, 12)
        self.linear2 = torch.nn.Linear(12, 29)
        self.gelu = torch.nn.GELU()

        if rank:
            self.linear1.cuda(rank)
            self.linear2.cuda(rank)

    def shard_parameter(self):
        rowwise_sharding_spec = ChunkShardingSpec(
            dim=0,
            placements=[
                "rank:0/cuda:0",
                "rank:1/cuda:1",
                "rank:2/cuda:2",
                "rank:3/cuda:3",
            ],
        )

        colwise_sharding_spec = ChunkShardingSpec(
            dim=1,
            placements=[
                "rank:0/cuda:0",
                "rank:1/cuda:1",
                "rank:2/cuda:2",
                "rank:3/cuda:3",
            ],
        )

        shard_parameter(self.linear1, "weight", rowwise_sharding_spec)
        shard_parameter(self.linear2, "weight", colwise_sharding_spec)

    def forward(self, inp):
        return self.linear2(self.gelu(self.linear1(inp)))


class TestShardedOptimizer(ShardedTensorTestBase):

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(4)
    @requires_nccl()
    def test_sharded_optim(self):
        rowwise_spec = ChunkShardingSpec(
            dim=0,
            placements=[
                "rank:0/cuda:0",
                "rank:1/cuda:1",
                "rank:2/cuda:2",
                "rank:3/cuda:3",
            ],
        )
        local_model = MyShardedModel().cuda()
        sharded_model = MyShardedModel(spec=rowwise_spec).cuda()

        # copy the parameteres from local model
        sharded_model.sharded_param.local_shards()[0].tensor = \
            local_model.sharded_param.detach().clone().requires_grad_()

        local_optim = optim.SGD(local_model.parameters(), lr=0.1)
        sharded_model_params = dict(sharded_model.named_parameters())
        sharded_optim = ShardedOptimizer(sharded_model_params, optim.SGD, lr=0.1)

        local_optim.zero_grad()
        sharded_optim.zero_grad()

        before_update = deepcopy(sharded_optim.named_params)

        inp = torch.rand([5, 10]).cuda(self.rank).requires_grad_()

        # run forward
        local_output = local_model(inp)
        sharded_output = sharded_model(inp)
        # backward
        local_output.sum().backward()
        sharded_output.sum().backward()

        # optimizer update
        local_optim.step()
        sharded_optim.step()

        # make sure the parameters (including sharded param)
        # get updated by the optimizer, and the updated
        # local params are the same as the sharded params
        for key, val in before_update.items():
            new_val = sharded_optim.named_params[key]
            if isinstance(val, sharded_tensor.ShardedTensor):
                self.assertNotEqual(
                    val.local_shards()[0].tensor,
                    new_val.local_shards()[0].tensor
                )
                self.assertEqual(
                    new_val.local_shards()[0].tensor,
                    local_model.sharded_param
                )
            else:
                self.assertNotEqual(val, new_val)
                self.assertEqual(new_val, local_model.param)

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(4)
    @requires_nccl()
    def test_named_params_with_sharded_tensor(self):
        rowwise_spec = ChunkShardingSpec(
            dim=0,
            placements=[
                "rank:0/cuda:0",
                "rank:1/cuda:1",
                "rank:2/cuda:2",
                "rank:3/cuda:3",
            ],
        )
        sharded_model = MyShardedModel(spec=rowwise_spec).cuda()
        sharded_model_params = dict(sharded_model.named_parameters())
        param_keys = list(sharded_model_params.keys())
        self.assertEqual(len(param_keys), 2)
        self.assertTrue("param" in param_keys)
        self.assertTrue("sharded_param" in param_keys)

        sharded_linear = MyShardedLinear(rank=self.rank).cuda()
        sharded_linear.shard_parameter()
        sharded_linear_params = dict(sharded_linear.named_parameters())
        param_keys = list(sharded_linear_params.keys())
        self.assertEqual(len(param_keys), 4)
        self.assertTrue("linear1.bias" in param_keys)
        self.assertTrue("linear2.bias" in param_keys)
        self.assertTrue("linear1.weight" in param_keys)
        self.assertTrue("linear2.weight" in param_keys)
        self.assertFalse("bias" in param_keys)

if __name__ == '__main__':
    run_tests()