1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
# Owner(s): ["oncall: distributed"]
import copy
import sys
import torch
import torch.distributed as dist
from torch.distributed._shard.api import (
shard_parameter,
_collect_local_shard,
_reshard_output,
)
from torch.distributed._shard.sharded_optim import (
ShardedOptimizer,
)
from torch.distributed._shard.sharded_tensor import (
empty,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
ShardMetadata,
)
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
TEST_GPU_NUM,
ShardedTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import (
clone_module_parameter,
generate_chunk_sharding_specs_for_test,
generate_local_weight_sharding_params_for_test,
)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class TestShardedTensorOpsLinear(ShardedTensorTestBase):
def _run_sharded_linear(
self, spec, input_size, linear_size, sharded_dim, dtype
):
# Use same seed.
torch.manual_seed(0)
local_linear = torch.nn.Linear(*linear_size, dtype=dtype).cuda(self.rank)
sharded_linear = torch.nn.Linear(*linear_size, dtype=dtype)
# Copy the weights and bias from local linear
sharded_linear.weight = clone_module_parameter(local_linear, "weight")
sharded_linear.bias = clone_module_parameter(local_linear, "bias")
# Shard the parameter.
shard_parameter(sharded_linear, "weight", spec)
# Run sharded computation
torch.manual_seed(self.rank) # inputs different on each rank
inp = torch.rand(*input_size, dtype=dtype).cuda(self.rank)
reshard_spec = copy.deepcopy(spec)
reshard_spec.dim = 0
reshard_spec.placements.sort(key=lambda placement: placement.rank())
sharded_linear = _collect_local_shard(
_reshard_output(sharded_linear, reshard_spec)
)
sharded_output = sharded_linear(inp)
# Run local computation
local_output = local_linear(inp)
# Verify
self.assertEqual(local_output, sharded_output, atol=1e-3, rtol=1e-3)
# Validate for torch.nn.functional.linear version.
local_output = torch.nn.functional.linear(
inp, local_linear.weight, local_linear.bias
)
sharded_output = torch.nn.functional.linear(
inp, sharded_linear.weight, sharded_linear.bias
)
sharded_output = sharded_output.reshard(reshard_spec).local_tensor()
# When local tensor only has one dimension, we increase one more dimension
# for reshard. We need to squeeze the # of dimensions manually.
if inp.dim() == 1:
sharded_output = sharded_output.squeeze(reshard_spec.dim)
self.assertEqual(local_output, sharded_output, atol=1e-3, rtol=1e-3)
# Compute loss and run backward pass.
local_output.sum().backward()
sharded_output.sum().backward()
local_grad = local_linear.weight.grad
# Verify that both weight and bias in the sharded linear has non-None grad.
sharded_weight = sharded_linear.weight.local_tensor()
self.assertNotEqual(sharded_linear.bias.grad, None)
self.assertNotEqual(sharded_weight.grad, None)
# Shard the local linear's weight grad so that we can compare.
dist.all_reduce(local_grad)
(start_pos, chunk_size) = generate_local_weight_sharding_params_for_test(
local_linear.weight, sharded_dim, TEST_GPU_NUM, spec, self.rank
)
local_grad_narrowed = local_grad.narrow(sharded_dim, start_pos, chunk_size)
local_bias_grad = local_linear.bias.grad
dist.all_reduce(local_bias_grad)
# Test backward gradient calculation.
self.assertEqual(sharded_linear.bias.grad, local_bias_grad, atol=1e-3, rtol=1e-3)
self.assertEqual(sharded_weight.grad, local_grad_narrowed, atol=1e-3, rtol=1e-3)
# Test optimizer.
previous = local_linear.weight.clone().detach()
optim = torch.optim.SGD(local_linear.parameters(), lr=0.1)
optim.step()
self.assertNotEqual(previous, local_linear.weight)
previous_sharded_weight = sharded_weight.clone()
previous_sharded_bias = sharded_linear.bias.clone()
sharded_optim = ShardedOptimizer(
dict(sharded_linear.named_parameters()),
torch.optim.SGD,
lr=0.1,
)
sharded_optim.step()
sharded_weight = sharded_linear.weight.local_tensor()
local_weight_narrowed = local_linear.weight.narrow(
sharded_dim, start_pos, chunk_size
)
self.assertEqual(sharded_weight.size(), local_weight_narrowed.size())
self.assertNotEqual(previous_sharded_weight, sharded_weight)
self.assertEqual(sharded_weight, local_weight_narrowed, atol=1e-3, rtol=1e-3)
self.assertNotEqual(previous_sharded_bias, sharded_linear.bias)
self.assertEqual(sharded_linear.bias, local_linear.bias, atol=1e-3, rtol=1e-3)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_sharded_linear_colwise(self):
for spec in generate_chunk_sharding_specs_for_test(0):
self._run_sharded_linear(spec, [2, 17], [17, 12], 0, torch.float16)
self._run_sharded_linear(spec, [8, 21], [21, 11], 0, torch.float32)
self._run_sharded_linear(spec, [7, 23], [23, 13], 0, torch.float64)
self._run_sharded_linear(spec, [4, 15], [15, 14], 0, torch.float16)
# Test multiple input dims
self._run_sharded_linear(spec, [10, 2, 17], [17, 12], 0, torch.float32)
self._run_sharded_linear(spec, [13, 8, 21], [21, 11], 0, torch.float64)
self._run_sharded_linear(spec, [27, 7, 23], [23, 13], 0, torch.float16)
self._run_sharded_linear(spec, [100, 12, 4, 15], [15, 14], 0, torch.float32)
# Test single input dim
self._run_sharded_linear(spec, [17], [17, 12], 0, torch.float64)
self._run_sharded_linear(spec, [21], [21, 11], 0, torch.float16)
self._run_sharded_linear(spec, [23], [23, 13], 0, torch.float32)
self._run_sharded_linear(spec, [15], [15, 14], 0, torch.float64)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_sharded_linear_rowwise(self):
for spec in generate_chunk_sharding_specs_for_test(1):
# Test even split.
self._run_sharded_linear(spec, [8, 16], [16, 11], 1, torch.float16)
# Test uneven split.
self._run_sharded_linear(spec, [5, 19], [19, 11], 1, torch.float32)
self._run_sharded_linear(spec, [10, 21], [21, 11], 1, torch.float64)
# Test multiple input dims
self._run_sharded_linear(spec, [13, 8, 16], [16, 11], 1, torch.float16)
self._run_sharded_linear(spec, [10, 5, 19], [19, 11], 1, torch.float32)
self._run_sharded_linear(spec, [12, 15, 10, 21], [21, 11], 1, torch.float64)
# Test single input dim
self._run_sharded_linear(spec, [16], [16, 11], 1, torch.float16)
self._run_sharded_linear(spec, [19], [19, 11], 1, torch.float32)
self._run_sharded_linear(spec, [21], [21, 11], 1, torch.float64)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_sharded_linear_errors(self):
for spec in generate_chunk_sharding_specs_for_test(0):
fc1 = torch.nn.Linear(10, 10).cuda(self.rank)
shard_parameter(fc1, "weight", spec)
shard_parameter(fc1, "bias", spec)
with self.assertRaisesRegex(TypeError, 'bias needs to be torch.Tensor'):
fc1(torch.rand(10, 10).cuda(self.rank))
fc2 = torch.nn.Linear(10, 10).cuda(self.rank)
shard_parameter(fc2, "weight", spec)
with self.assertRaisesRegex(ValueError, 'Input needs to have at least 1 dim'):
fc2(torch.tensor(1).cuda(self.rank))
fc3 = torch.nn.Linear(10, 10).cuda(self.rank)
fc3.weight = torch.nn.Parameter(torch.rand(10, 10, 10).cuda(self.rank))
shard_parameter(fc3, "weight", spec)
with self.assertRaisesRegex(ValueError, 'Weight needs to have exactly 2 dims'):
fc3(torch.rand(10, 10).cuda(self.rank))
fc4 = torch.nn.Linear(10, 10).cuda(self.rank)
fc4.bias = torch.nn.Parameter(torch.rand(10, 10).cuda(self.rank))
shard_parameter(fc4, "weight", spec)
with self.assertRaisesRegex(ValueError, 'Bias needs to have exactly 1 dim'):
fc4(torch.rand(10, 10).cuda(self.rank))
fc5 = torch.nn.Linear(7, 10).cuda(self.rank)
shard_parameter(fc5, "weight", spec)
with self.assertRaisesRegex(ValueError, 'Input dim: 13 does not match appropriate weight dim: 7'):
fc5(torch.rand(20, 10, 13).cuda(self.rank))
fc6 = torch.nn.Linear(10, 10).cuda(self.rank)
del fc6.weight
enumerable_spec = EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="rank:0/cuda:0",
),
ShardMetadata(
shard_offsets=[0, 5],
shard_sizes=[5, 5],
placement="rank:1/cuda:1",
),
ShardMetadata(
shard_offsets=[5, 0],
shard_sizes=[5, 5],
placement="rank:2/cuda:2",
),
ShardMetadata(
shard_offsets=[5, 5],
shard_sizes=[5, 5],
placement="rank:3/cuda:3",
)
])
fc6.weight = empty(enumerable_spec, 10, 10)
# Sharded Tensor metadata has parenthesis imbalance issue when using re.compile
error_msg = r"torch function 'linear', with args: (?s).* "
r"and kwargs: None not supported for ShardedTensor!"
with self.assertRaisesRegex(RuntimeError, error_msg):
fc6(torch.rand(10, 10).cuda(self.rank))
fc7 = torch.nn.Linear(10, 80).cuda(self.rank)
multiple_local_shard_spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:2/cuda:2",
"rank:3/cuda:3",
"rank:3/cuda:3",
],
)
del fc7.weight
fc7.weight = empty(multiple_local_shard_spec, 80, 10)
with self.assertRaisesRegex(ValueError, 'Only one local shard supported!'):
fc7(torch.rand(10, 10).cuda(self.rank))
if __name__ == "__main__":
run_tests()
|