File: test_sharding_plan.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (367 lines) | stat: -rw-r--r-- 14,319 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

# Owner(s): ["oncall: distributed"]
import sys
import copy

import torch
import torch.nn as nn
import torch.distributed as dist
from torch.distributed._shard.sharded_optim import (
    ShardedOptimizer,
)
from torch.testing._internal.common_distributed import (
    requires_nccl,
    skip_if_lt_x_gpu,
)
from torch.distributed._shard import shard_module
from torch.distributed._shard.sharding_plan import ShardingPlan, ShardingPlanner
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.distributed._shard.sharded_tensor import ShardedTensor

from torch.testing._internal.common_utils import (
    TEST_WITH_DEV_DBG_ASAN,
    run_tests,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
    TEST_GPU_NUM,
    ShardedTensorTestBase,
    with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import (
    generate_chunk_sharding_specs_for_test,
    generate_local_weight_sharding_params_for_test,
)
from torch.testing._internal.distributed._shard.test_common import SimpleMegatronLM

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


# Example ShardingPlanner that chunks every parameter in the module
# to all available devices defined.
class ChunkAllShardingPlanner(ShardingPlanner):
    dim = 0
    devices = []

    def __init__(self, chunk_dim=0, device_count=0):
        self.dim = chunk_dim
        self.devices = [f"rank:{i}/cuda:{i}" for i in range(device_count)]

    def build_plan(self, module: nn.Module) -> ShardingPlan:
        named_params = module.named_parameters()
        plan = {}
        for name, param in named_params:
            plan[name] = ChunkShardingSpec(self.dim, placements=self.devices)

        return ShardingPlan(plan=plan)


class TestShardingPlan(ShardedTensorTestBase):

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(TEST_GPU_NUM)
    @requires_nccl()
    def test_sharding_plan_simple_megatron(self):
        colwise_sharding_spec = generate_chunk_sharding_specs_for_test(0)
        rowwise_sharding_spec = generate_chunk_sharding_specs_for_test(1)
        for spec in zip(colwise_sharding_spec, rowwise_sharding_spec):
            # test each sharding spec pair and see if we can apply sharding
            reshard_spec = copy.deepcopy(spec[1])
            reshard_spec.placements.sort(key=lambda placement: placement.rank())
            reshard_spec.dim = 0

            sharding_plan = ShardingPlan(
                plan={
                    "fc1.weight": spec[0],
                    "fc2.weight": spec[1]
                },
                output_plan={
                    "": reshard_spec
                },
                return_local_tensor=[""])

            # Use same seed.
            torch.manual_seed(0)
            local_megatron_lm = SimpleMegatronLM([[17, 12], [12, 29]]).cuda(self.rank)
            megatron_lm = copy.deepcopy(local_megatron_lm)

            # shard the module with the provided sharding plan
            shard_module(megatron_lm, sharding_plan)

            # check to make sure the module already been sharded
            self.assertTrue(isinstance(megatron_lm.fc1.weight, ShardedTensor))
            self.assertTrue(isinstance(megatron_lm.fc2.weight, ShardedTensor))
            self.assertEqual(megatron_lm.fc1.weight.sharding_spec(), spec[0])
            self.assertEqual(megatron_lm.fc2.weight.sharding_spec(), spec[1])

            # make sure we can run sharded computation
            input = torch.rand(22, 17).cuda(self.rank)
            sharded_output = megatron_lm(input)
            local_output = local_megatron_lm(input)

            # verify and make sure local and sharded output matches
            self.assertEqual(local_output, sharded_output)

            # Compute loss and run backward pass.
            local_output.sum().backward()
            sharded_output.sum().backward()
            (
                local_weight_grad_fc1,
                local_weight_grad_fc2,
            ) = local_megatron_lm.get_weight_grads()
            local_bias_grad_fc1, local_bias_grad_fc2 = local_megatron_lm.get_bias_grads()

            # Verify that weights in both layers and biases in the sharded linear has non-None grad.
            (
                sharded_weight_fc1,
                sharded_weight_fc2,
            ) = megatron_lm.get_weights()
            bias_grad_fc1, bias_grad_fc2 = megatron_lm.get_bias_grads()
            self.assertNotEqual(sharded_weight_fc1.grad, None)
            self.assertNotEqual(sharded_weight_fc2.grad, None)
            self.assertNotEqual(bias_grad_fc1, None)
            self.assertNotEqual(bias_grad_fc2, None)

            # Shard the local linear's weight grad so that we can compare.
            dist.all_reduce(local_weight_grad_fc1)
            dist.all_reduce(local_weight_grad_fc2)
            dist.all_reduce(local_bias_grad_fc1)
            dist.all_reduce(local_bias_grad_fc2)
            local_weight_fc1, local_weight_fc2 = local_megatron_lm.get_weights()
            (
                start_pos_fc1,
                chunk_size_fc1,
            ) = generate_local_weight_sharding_params_for_test(
                local_weight_fc1, 0, TEST_GPU_NUM, spec[0], self.rank
            )
            local_grad_narrowed_fc1 = local_weight_grad_fc1.narrow(
                0, start_pos_fc1, chunk_size_fc1
            )
            (
                start_pos_fc2,
                chunk_size_fc2,
            ) = generate_local_weight_sharding_params_for_test(
                local_weight_fc2, 1, TEST_GPU_NUM, spec[1], self.rank
            )
            local_grad_narrowed_fc2 = local_weight_grad_fc2.narrow(
                1, start_pos_fc2, chunk_size_fc2
            )

            # Test backward gradient calculation.
            self.assertEqual(sharded_weight_fc1.grad, local_grad_narrowed_fc1)
            self.assertEqual(sharded_weight_fc2.grad, local_grad_narrowed_fc2)
            self.assertEqual(bias_grad_fc1, local_bias_grad_fc1)
            self.assertEqual(bias_grad_fc2, local_bias_grad_fc2)

            # Test optimizer.
            bias_fc1, bias_fc2 = megatron_lm.get_biases()
            local_bias_fc1, local_bias_fc2 = local_megatron_lm.get_biases()
            self.assertEqual(bias_fc1, local_bias_fc1)
            self.assertEqual(bias_fc2, local_bias_fc2)
            self.assertEqual(bias_fc1.grad, local_bias_fc1.grad)
            self.assertEqual(bias_fc2.grad, local_bias_fc2.grad)
            previous_sharded_weight_fc1 = sharded_weight_fc1.clone()
            previous_sharded_weight_fc2 = sharded_weight_fc2.clone()
            previous_bias_fc1 = bias_fc1.clone()
            previous_bias_fc2 = bias_fc2.clone()
            optim = torch.optim.SGD(local_megatron_lm.parameters(), lr=0.1)
            optim.step()
            sharded_optim = ShardedOptimizer(
                dict(megatron_lm.named_parameters()),
                torch.optim.SGD,
                lr=0.1,
            )
            sharded_optim.step()
            local_weight_fc1_narrowed = local_weight_fc1.narrow(
                0, start_pos_fc1, chunk_size_fc1
            )
            local_weight_fc2_narrowed = local_weight_fc2.narrow(
                1, start_pos_fc2, chunk_size_fc2
            )

            # Test weight value after optimizer.
            self.assertEqual(sharded_weight_fc1.size(), local_weight_fc1_narrowed.size())
            self.assertEqual(sharded_weight_fc2.size(), local_weight_fc2_narrowed.size())
            self.assertNotEqual(previous_sharded_weight_fc1, sharded_weight_fc1)
            self.assertNotEqual(previous_sharded_weight_fc2, sharded_weight_fc2)
            self.assertEqual(sharded_weight_fc1, local_weight_fc1_narrowed)
            self.assertEqual(sharded_weight_fc2, local_weight_fc2_narrowed)

            # Test bias value after optimizer.
            local_bias_fc1, local_bias_fc2 = local_megatron_lm.get_biases()
            self.assertNotEqual(previous_bias_fc1, bias_fc1)
            self.assertEqual(bias_fc1, local_bias_fc1)
            self.assertNotEqual(previous_bias_fc2, bias_fc2)
            self.assertEqual(bias_fc2, local_bias_fc2)

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(TEST_GPU_NUM)
    @requires_nccl()
    def test_reshard_to_ddp_sharding_plan(self):
        colwise_sharding_spec = generate_chunk_sharding_specs_for_test(0)[0]
        rowwise_sharding_spec = generate_chunk_sharding_specs_for_test(1)[0]

        # test each sharding spec pair and see if we can apply sharding
        output_spec = copy.deepcopy(rowwise_sharding_spec)
        output_spec.placements.sort(key=lambda placement: placement.rank())
        output_spec.dim = 0

        # new module with megatron as submodule
        class MyModule(nn.Module):
            def __init__(self, rank=None):
                super().__init__()
                self.megatron = SimpleMegatronLM([[17, 12], [12, 29]], rank=rank)
                self.relu = nn.ReLU()

            def forward(self, input):
                return self.relu(self.megatron(input))

        sharding_plan = ShardingPlan(
            plan={
                "megatron.fc1.weight": colwise_sharding_spec,
                "megatron.fc2.weight": rowwise_sharding_spec,
            },
            output_plan={
                "megatron": output_spec
            },
            return_local_tensor=[
                "megatron"
            ]
        )

        # Use same seed.
        torch.manual_seed(0)
        local_module = MyModule().cuda(self.rank)
        sharded_module = copy.deepcopy(local_module)

        # shard the module with the provided sharding plan
        shard_module(sharded_module, sharding_plan)

        # check to make sure the module already been sharded
        self.assertTrue(isinstance(sharded_module.megatron.fc1.weight, ShardedTensor))
        self.assertTrue(isinstance(sharded_module.megatron.fc2.weight, ShardedTensor))
        self.assertEqual(sharded_module.megatron.fc1.weight.sharding_spec(), colwise_sharding_spec)
        self.assertEqual(sharded_module.megatron.fc2.weight.sharding_spec(), rowwise_sharding_spec)

        # make sure we can run sharded computation
        input = torch.rand(22, 17).cuda(self.rank)
        sharded_output = sharded_module(input)
        local_output = local_module(input)

        # verify and make sure local and sharded output matches
        self.assertEqual(local_output, sharded_output)

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(TEST_GPU_NUM)
    @requires_nccl()
    def test_sharding_plan_errors(self):
        rowwise_sharding_spec = generate_chunk_sharding_specs_for_test(1)[0]
        sharding_plan_wrong_plan = ShardingPlan(
            plan={
                "fc1.weight": torch.randn(3, 4),
            },
            output_plan={
                "": rowwise_sharding_spec
            },
        )

        megatron_lm = SimpleMegatronLM([[17, 12], [12, 29]]).cuda(self.rank)

        with self.assertRaisesRegex(
            TypeError, "Only `ShardingSpec` and `Sharder` are supported to shard"
        ):
            # shard the module with the provided sharding plan
            shard_module(megatron_lm, sharding_plan_wrong_plan)

        sharding_plan_wrong_output_plan = ShardingPlan(
            plan={
                "fc1.weight": rowwise_sharding_spec,
            },
            output_plan={
                "": torch.randn(3, 4)
            },
        )

        with self.assertRaisesRegex(
            TypeError, "Only `ShardingSpec` is supported as output_plan"
        ):
            # shard the module with the provided sharding plan
            shard_module(megatron_lm, sharding_plan_wrong_output_plan)

        sharding_plan_wrong_module_path = ShardingPlan(
            plan={
                "fc3.weight": rowwise_sharding_spec,
            },
        )
        with self.assertRaisesRegex(
            AttributeError, "has no attribute"
        ):
            # shard the module with the provided sharding plan
            shard_module(megatron_lm, sharding_plan_wrong_module_path)

        sharding_plan_wrong_param_path = ShardingPlan(
            plan={
                "fc1.biass": rowwise_sharding_spec,
            },
        )
        with self.assertRaisesRegex(
            AttributeError, "has no attribute"
        ):
            # shard the module with the provided sharding plan
            shard_module(megatron_lm, sharding_plan_wrong_param_path)

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(TEST_GPU_NUM)
    @requires_nccl()
    def test_custom_sharding_planner(self):
        megatron_lm = SimpleMegatronLM([[17, 12], [12, 29]], rank=self.rank).cuda(
            self.rank
        )
        planner = ChunkAllShardingPlanner(device_count=TEST_GPU_NUM)
        sharding_plan = planner.build_plan(megatron_lm)

        shard_module(megatron_lm, sharding_plan)

        # check to make sure the module already been sharded
        self.assertTrue(isinstance(megatron_lm.fc1.weight, ShardedTensor))
        self.assertTrue(isinstance(megatron_lm.fc2.weight, ShardedTensor))
        self.assertTrue(isinstance(megatron_lm.fc1.bias, ShardedTensor))
        self.assertTrue(isinstance(megatron_lm.fc2.bias, ShardedTensor))

    @with_comms(init_rpc=False)
    @skip_if_lt_x_gpu(TEST_GPU_NUM)
    @requires_nccl()
    def test_shard_module_sub_process_group(self):
        megatron_lm = SimpleMegatronLM([[17, 12], [12, 29]], rank=self.rank)
        colwise_sharding_spec = ChunkShardingSpec(
            dim=0,
            placements=[
                "rank:0/cuda:2",
                "rank:1/cuda:3",
            ],
        )
        rowwise_sharding_spec = ChunkShardingSpec(
            dim=1,
            placements=[
                "rank:0/cuda:2",
                "rank:1/cuda:3",
            ],
        )
        sharding_plan = ShardingPlan(
            plan={
                "fc1.weight": colwise_sharding_spec,
                "fc2.weight": rowwise_sharding_spec
            }
        )

        pg = dist.new_group([2, 3])

        if self.rank >= 2:
            shard_module(megatron_lm, sharding_plan, process_group=pg)

if __name__ == "__main__":
    run_tests()