1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
# Owner(s): ["oncall: distributed"]
from typing import List, Union
from dataclasses import dataclass
import copy
import torch
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.distributed._shard import sharded_tensor, _shard_tensor
from torch.distributed._shard.sharding_spec import (
ShardingSpec,
ChunkShardingSpec,
DevicePlacementSpec,
EnumerableShardingSpec,
ShardMetadata,
_infer_sharding_spec_from_shards_metadata,
)
from torch.distributed._shard.sharded_tensor import (
TensorProperties,
ShardedTensor,
ShardedTensorMetadata,
)
from torch.distributed._shard.sharding_spec._internals import (
check_tensor,
get_split_size,
get_chunked_dim_size,
get_chunk_sharding_params,
)
from torch.testing._internal.common_utils import (
run_tests,
sandcastle_skip_if,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
_chunk_sharding_specs_list_for_test,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
class TestShardingSpec(TestCase):
@sandcastle_skip_if(torch.cuda.device_count() < 2, '2 CUDA GPUs are needed')
def test_device_placement(self):
# valid devices
DevicePlacementSpec("cuda:0")
DevicePlacementSpec(torch.device(0))
DevicePlacementSpec(torch.device("cuda:0"))
DevicePlacementSpec("rank:0/cuda:0")
DevicePlacementSpec("rank:0/cpu")
DevicePlacementSpec("rank:0")
# invalid devices
with self.assertRaisesRegex(ValueError, "Could not parse remote_device"):
DevicePlacementSpec("cuda:foo")
with self.assertRaisesRegex(ValueError, "Could not parse remote_device"):
DevicePlacementSpec("foo:0")
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
DevicePlacementSpec("rank:0/cuda:foo")
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
DevicePlacementSpec("rank:0/cpu2")
@sandcastle_skip_if(torch.cuda.device_count() < 2, '2 CUDA GPUs are needed')
def test_chunked_sharding_spec(self):
# Test valid specs.
ChunkShardingSpec(0, [torch.device(0), torch.device(1)])
ChunkShardingSpec(0, [torch.device("cuda:0"), torch.device("cuda:1")])
ChunkShardingSpec(-1, ["cuda:0", "cuda:1"])
ChunkShardingSpec(0, ["rank:0/cuda:0", "rank:0/cuda:1"])
ChunkShardingSpec(0, ["rank:0", "rank:1"])
ChunkShardingSpec(0, ["rank:0/cpu", "rank:1/cpu"])
# Test unimplemented error
with self.assertRaisesRegex(NotImplementedError, "not support named dimension"):
# Named dimension.
ChunkShardingSpec("N", ["cuda:0", "cuda:1"])
# Test invalid specs
with self.assertRaisesRegex(ValueError, "needs to be an integer"):
ChunkShardingSpec(None, ["cuda:0", "cuda:1"])
with self.assertRaisesRegex(ValueError, "needs to be an integer"):
ChunkShardingSpec({}, ["cuda:0", "cuda:1"])
with self.assertRaisesRegex(ValueError, "Could not parse remote_device"):
ChunkShardingSpec(0, ["random:0", "cuda:1"])
with self.assertRaisesRegex(ValueError, "Could not parse remote_device"):
ChunkShardingSpec(0, ["cuda:foo", "cuda:1"])
with self.assertRaisesRegex(ValueError, "Could not parse remote_device"):
ChunkShardingSpec(0, ["rank:foo", "cuda:1"])
with self.assertRaisesRegex(RuntimeError, "Expected one of"):
ChunkShardingSpec(0, ["rank:0/foo", "cuda:1"])
with self.assertRaisesRegex(RuntimeError, "Expected one of"):
ChunkShardingSpec(0, ["rank:0/random:0", "cuda:1"])
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
ChunkShardingSpec(0, ["rank:0/cuda:foo", "cuda:1"])
@sandcastle_skip_if(torch.cuda.device_count() < 2, '2 CUDA GPUs are needed')
def test_enumerable_sharding_spec(self):
# test valid specs
# test row-wise sharding
spec = EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="cuda:0",
),
ShardMetadata(
shard_offsets=[5, 0],
shard_sizes=[5, 5],
placement="cuda:1",
)
])
check_tensor(spec.shards, torch.rand(10, 5).size())
# test row and column sharding
spec = EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[3, 3],
placement="cuda:0",
),
ShardMetadata(
shard_offsets=[0, 3],
shard_sizes=[3, 3],
placement="cuda:1",
),
ShardMetadata(
shard_offsets=[3, 0],
shard_sizes=[3, 3],
placement="cuda:2",
),
ShardMetadata(
shard_offsets=[3, 3],
shard_sizes=[3, 3],
placement="cuda:3",
),
])
check_tensor(spec.shards, torch.rand(6, 6).size())
# test uneven shard sizes.
spec = EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[2, 4],
placement="cuda:0",
),
ShardMetadata(
shard_offsets=[0, 4],
shard_sizes=[4, 2],
placement="cuda:1",
),
ShardMetadata(
shard_offsets=[2, 0],
shard_sizes=[4, 4],
placement="cuda:2",
),
ShardMetadata(
shard_offsets=[4, 4],
shard_sizes=[2, 2],
placement="cuda:3",
),
])
check_tensor(spec.shards, torch.rand(6, 6).size())
# test invalid sharding
with self.assertRaisesRegex(ValueError, 'Could not parse remote_device'):
ShardMetadata(shard_offsets=[0], shard_sizes=[1], placement="cuda:foo")
with self.assertRaisesRegex(ValueError, 'same number of elements'):
ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1], placement="cuda:0")
with self.assertRaisesRegex(ValueError, 'shard_offsets should be >=0'):
ShardMetadata(shard_offsets=[-1, 0], shard_sizes=[1, 1], placement="cuda:0")
with self.assertRaisesRegex(ValueError, 'shard_sizes should be >= 0'):
ShardMetadata(shard_offsets=[0, 0], shard_sizes=[-1, 1], placement="cuda:0")
with self.assertRaisesRegex(ValueError, 'Empty shard list provided'):
EnumerableShardingSpec([])
with self.assertRaisesRegex(ValueError, 'Found inconsistent ranks for shards'):
EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[1, 1],
placement="cpu"
),
ShardMetadata(
shard_offsets=[0, 0, 0],
shard_sizes=[1, 1, 1],
placement="cpu"
),
])
with self.assertRaisesRegex(ValueError, 'Shards.*overlap'):
EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[3, 3],
placement="cpu"
),
ShardMetadata(
shard_offsets=[2, 0],
shard_sizes=[3, 3],
placement="cpu"
),
])
spec = EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="cuda:0",
),
ShardMetadata(
shard_offsets=[5, 0],
shard_sizes=[5, 5],
placement="cuda:1",
)
])
with self.assertRaisesRegex(ValueError, 'Rank of tensor is.*but shards rank'):
check_tensor(spec.shards, torch.rand(10, 10, 10).size())
spec = EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="cuda:0",
),
ShardMetadata(
shard_offsets=[5, 0],
shard_sizes=[5, 5],
placement="cuda:1",
)
])
with self.assertRaisesRegex(ValueError, 'exceeds tensor dim'):
check_tensor(spec.shards, torch.rand(10, 3).size())
spec = EnumerableShardingSpec([
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="cuda:0",
),
ShardMetadata(
shard_offsets=[5, 5],
shard_sizes=[5, 5],
placement="cuda:1",
)
])
with self.assertRaisesRegex(ValueError, 'does not match tensor volume'):
check_tensor(spec.shards, torch.rand(10, 10).size())
def test_get_split_size(self):
self.assertEqual(3, get_split_size(11, 4))
self.assertEqual(3, get_split_size(12, 4))
self.assertEqual(4, get_split_size(13, 4))
self.assertEqual(2, get_split_size(5, 4))
self.assertEqual(11, get_split_size(11, 1))
self.assertEqual(1, get_split_size(11, 11))
def test_get_chunked_dim_size(self):
self.assertEqual(3, get_chunked_dim_size(11, 3, 0))
self.assertEqual(2, get_chunked_dim_size(11, 3, 3))
self.assertEqual(4, get_chunked_dim_size(13, 4, 0))
self.assertEqual(1, get_chunked_dim_size(13, 4, 3))
self.assertEqual(0, get_chunked_dim_size(5, 2, 3))
def test_get_chunk_sharding_params(self):
ranks = [
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
]
spec = ChunkShardingSpec(
dim=0,
placements=ranks,
)
result = get_chunk_sharding_params(21, 4, spec, 1)
self.assertEqual(6, result[0])
self.assertEqual(6, result[1])
result = get_chunk_sharding_params(21, 4, spec, 3)
self.assertEqual(18, result[0])
self.assertEqual(3, result[1])
ranks[1], ranks[2] = ranks[2], ranks[1]
ranks[0], ranks[3] = ranks[3], ranks[0]
spec.placements = ranks
result = get_chunk_sharding_params(21, 4, spec, 1)
self.assertEqual(12, result[0])
self.assertEqual(6, result[1])
result = get_chunk_sharding_params(21, 4, spec, 3)
self.assertEqual(0, result[0])
self.assertEqual(6, result[1])
def _infer_enum_sharding_spec_case(self):
shards_metadata = [
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="cuda:0",
),
ShardMetadata(
shard_offsets=[5, 0],
shard_sizes=[10, 5],
placement="cuda:1",
)
]
spec = _infer_sharding_spec_from_shards_metadata(shards_metadata)
self.assertTrue(isinstance(spec, EnumerableShardingSpec))
self.assertEqual(spec.shards, shards_metadata)
shards_metadata = [
ShardMetadata(
shard_offsets=[0],
shard_sizes=[16],
placement="cuda:0",
),
ShardMetadata(
shard_offsets=[16],
shard_sizes=[9],
placement="cuda:1",
)
]
spec = _infer_sharding_spec_from_shards_metadata(shards_metadata)
self.assertTrue(isinstance(spec, EnumerableShardingSpec))
self.assertEqual(spec.shards, shards_metadata)
shards_metadata = [
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="rank:0/cuda:0",
),
ShardMetadata(
shard_offsets=[5, 0],
shard_sizes=[5, 5],
placement="rank:1/cuda:1",
),
ShardMetadata(
shard_offsets=[0, 5],
shard_sizes=[5, 5],
placement="rank:2/cuda:2",
),
ShardMetadata(
shard_offsets=[5, 5],
shard_sizes=[5, 5],
placement="rank:3/cuda:3",
),
]
spec = _infer_sharding_spec_from_shards_metadata(shards_metadata)
self.assertTrue(isinstance(spec, EnumerableShardingSpec))
self.assertEqual(spec.shards, shards_metadata)
def _infer_chunk_sharding_spec_case(self, placements, sharding_dim, st_size):
world_size = len(placements)
split_size = get_split_size(st_size[sharding_dim], world_size)
shards_metadata = [None] * world_size
for idx, placement in enumerate(placements):
shard_size = copy.deepcopy(st_size)
offsets = [0] * len(st_size)
offsets[sharding_dim] = split_size * idx
shard_size[sharding_dim] = get_chunked_dim_size(st_size[sharding_dim], split_size, idx)
shards_metadata[placement.rank()] = ShardMetadata(
shard_offsets=offsets,
shard_sizes=shard_size,
placement=placement,
)
spec = _infer_sharding_spec_from_shards_metadata(shards_metadata)
self.assertTrue(isinstance(spec, ChunkShardingSpec))
self.assertEqual(spec.dim, sharding_dim)
self.assertEqual(spec.placements, placements)
def test_infer_sharding_spec_from_shards_metadata(self):
self._infer_enum_sharding_spec_case()
chunk_specs = _chunk_sharding_specs_list_for_test([0, 0, 1, 1], seed=31)
for spec in chunk_specs:
self._infer_chunk_sharding_spec_case(spec.placements, 0, [4, 16])
self._infer_chunk_sharding_spec_case(spec.placements, 0, [5, 15, 16])
self._infer_chunk_sharding_spec_case(spec.placements, 1, [12, 16])
self._infer_chunk_sharding_spec_case(spec.placements, 2, [4, 18, 15])
self._infer_chunk_sharding_spec_case(spec.placements, 3, [7, 12, 16, 37])
self._infer_chunk_sharding_spec_case(spec.placements, 4, [50, 4, 18, 15, 77])
# Custom ShardingSpec, an simple example to do grid sharding
@dataclass
class GridShardingSpec(ShardingSpec):
grid_size: int
placements: List[Union[torch.distributed._remote_device, str]]
def __post_init__(self):
for i, remote_device in enumerate(self.placements):
if not isinstance(remote_device, torch.distributed._remote_device):
self.placements[i] = torch.distributed._remote_device(remote_device)
def build_metadata(self,
tensor_sizes: torch.Size,
tensor_properties: TensorProperties,
) -> ShardedTensorMetadata:
tensor_num_dim = len(tensor_sizes)
assert tensor_num_dim == 2, "only support 2-dim tensor for grid sharding"
shards_metadata = []
def chunk_num(dim_size, grid_size):
assert dim_size % grid_size == 0, "only support dim_size mod grid_size == 0"
return dim_size // grid_size
row_chunks = chunk_num(tensor_sizes[0], self.grid_size)
col_chunks = chunk_num(tensor_sizes[1], self.grid_size)
assert row_chunks * col_chunks == len(self.placements)
for row_idx in range(row_chunks):
for col_idx in range(col_chunks):
shards_metadata.append(
ShardMetadata(
shard_offsets=[row_idx * self.grid_size, col_idx * self.grid_size],
shard_sizes=[self.grid_size, self.grid_size],
placement=self.placements[row_idx * row_chunks + col_idx]
)
)
return ShardedTensorMetadata(
shards_metadata=shards_metadata,
size=tensor_sizes,
tensor_properties=tensor_properties
)
def shard(self,
tensor: torch.Tensor,
src_rank: int = 0,
process_group=None) -> ShardedTensor:
raise NotImplementedError("GridShardingSpec.shard not implemented yet!")
class TestCustomShardingSpec(ShardedTensorTestBase):
def test_custom_sharding_spec(self):
ranks = [
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
]
grid_spec = GridShardingSpec(
grid_size=4,
placements=ranks
)
tensor_properties = TensorProperties(
dtype=torch.get_default_dtype(),
layout=torch.strided,
requires_grad=False,
memory_format=torch.contiguous_format,
pin_memory=False,
)
meta = grid_spec.build_metadata(torch.Size((8, 8)), tensor_properties)
check_tensor(meta.shards_metadata, torch.Size((8, 8)))
@with_comms
@skip_if_lt_x_gpu(4)
@requires_nccl()
def test_custom_sharding_spec_tensor_ctor(self):
""" Test sharded_tensor.ones(...) with the custom
grid sharding spec.
"""
ranks = [
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
]
grid_spec = GridShardingSpec(
grid_size=2,
placements=ranks
)
st = sharded_tensor.ones(grid_spec, 4, 4)
# Validate local shard is initialized with torch.ones
local_shards = st.local_shards()
self.assertEqual(1, len(local_shards))
local_shard = local_shards[0].tensor
self.assertEqual(torch.device(f"cuda:{self.rank}"), local_shard.device)
self.assertEqual((2, 2), local_shard.size())
self.assertEqual(local_shard, torch.ones(2, 2))
@with_comms
@skip_if_lt_x_gpu(4)
@requires_nccl()
def test_custom_sharding_spec_shard_tensor(self):
""" Test custom spec can be invoked from the
_shard_tensor callsite.
"""
ranks = [
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
]
grid_spec = GridShardingSpec(
grid_size=2,
placements=ranks
)
with self.assertRaisesRegex(NotImplementedError, 'not implemented'):
_shard_tensor(torch.randn(8, 8), grid_spec)
if __name__ == '__main__':
run_tests()
|