1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# Owner(s): ["oncall: distributed"]
import sys
import torch
import torch.distributed as dist
from torch.distributed._shard.partial_tensor import (
_PartialTensor,
)
from torch.distributed._shard.sharding_spec import (
ChunkShardingSpec,
EnumerableShardingSpec,
ShardMetadata,
)
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
TEST_GPU_NUM
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_st_common import (
_chunk_sharding_specs_list_for_test,
)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class TestPartialTensorReshard(ShardedTensorTestBase):
def _run_partial_tensor_n_reshard(
self, reshard_spec, input_size, world_size, reduce_op, dtype=torch.float, pg=None
):
results_compare = []
local_result = []
pg = pg if pg is not None else dist.distributed_c10d._get_default_group()
for rank in range(pg.size()):
torch.manual_seed(rank)
results = []
for _ in range(world_size):
tensor = torch.rand(*input_size, dtype=dtype).cuda(self.rank)
results.append(tensor)
if self.rank % pg.size() == rank:
local_result.append(tensor.clone().detach())
results_compare.append(torch.cat(results))
parital_tensor = _PartialTensor(
torch.cat(local_result), pg, reduce_op=reduce_op
)
local_sharded_result = parital_tensor.reshard(reshard_spec)
local_shards = local_sharded_result.local_shards()
results_compare = torch.stack(results_compare)
if reduce_op == dist.ReduceOp.SUM:
results_compare = torch.sum(results_compare, dim=0)
else:
results_compare = torch.max(results_compare, dim=0).values
rank_idx = None
for idx, placement in enumerate(reshard_spec.placements):
if placement.rank() == self.rank % pg.size():
rank_idx = idx
local_result_compare = results_compare.chunk(pg.size())[rank_idx]
self.assertEqual(1, len(local_shards))
self.assertEqual(local_shards[0].tensor, local_result_compare)
def _reshard_spec_for_subgroup(self, rank):
if rank in [0, 1]:
return ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
],
)
else:
return ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:2",
"rank:1/cuda:3",
],
)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_partial_tensor_reshard(self):
specs = _chunk_sharding_specs_list_for_test([0], seed=7)
spec = specs[0]
self._run_partial_tensor_n_reshard(spec, [13, 21], 4, dist.ReduceOp.SUM)
self._run_partial_tensor_n_reshard(spec, [12, 22], 4, dist.ReduceOp.MAX)
self._run_partial_tensor_n_reshard(spec, [13, 21], 3, dist.ReduceOp.SUM)
self._run_partial_tensor_n_reshard(spec, [17, 21], 2, dist.ReduceOp.MAX)
sub_pgs = [dist.new_group([0, 1]), dist.new_group([2, 3])]
pg = sub_pgs[self.rank // 2]
spec = self._reshard_spec_for_subgroup(self.rank)
self._run_partial_tensor_n_reshard(spec, [12, 22], 4, dist.ReduceOp.MAX, pg=pg)
self._run_partial_tensor_n_reshard(spec, [13, 22], 3, dist.ReduceOp.SUM, pg=pg)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_partial_tensor_reshard_errors(self):
enumerable_sharding_spec = EnumerableShardingSpec(
[
ShardMetadata(
shard_offsets=[0, 0],
shard_sizes=[5, 5],
placement="rank:0/cuda:0",
),
ShardMetadata(
shard_offsets=[5, 0],
shard_sizes=[5, 5],
placement="rank:1/cuda:1",
),
]
)
with self.assertRaisesRegex(
NotImplementedError, "Only ChunkShardingSpec supported for reshard."
):
self._run_partial_tensor_n_reshard(
enumerable_sharding_spec, [13, 21], 4, dist.ReduceOp.SUM
)
self._run_partial_tensor_n_reshard(
enumerable_sharding_spec, [12, 22], 4, dist.ReduceOp.MAX
)
specs = _chunk_sharding_specs_list_for_test([0], seed=7)
spec = specs[0]
with self.assertRaisesRegex(
NotImplementedError, "Only real partial tensor supported for reshard."
):
self._run_partial_tensor_n_reshard(
spec, [13, 21], 4, dist.ReduceOp.SUM, dtype=torch.cfloat
)
self._run_partial_tensor_n_reshard(
spec, [12, 22], 4, dist.ReduceOp.MAX, dtype=torch.cfloat
)
class TestPartialTensorOps(ShardedTensorTestBase):
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_transpose(self):
partial_tensor = _PartialTensor(torch.rand(5, 10))
partial_tensor = partial_tensor.transpose(0, 1)
self.assertEqual(partial_tensor.size(), torch.Size((10, 5)))
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_cat(self):
t1 = torch.rand(5, 10)
t2 = torch.rand(3, 10)
t3 = torch.rand(4, 10)
partial_tensors = [_PartialTensor(t1), _PartialTensor(t2), _PartialTensor(t3)]
partial_concat = torch.cat(partial_tensors)
local_concat = torch.cat([t1, t2, t3])
self.assertEqual(local_concat.size(), partial_concat.size())
# Test dim kwarg
t1 = torch.rand(5, 10)
t2 = torch.rand(5, 12)
t3 = torch.rand(5, 11)
partial_tensors = [_PartialTensor(t1), _PartialTensor(t2), _PartialTensor(t3)]
partial_concat = torch.cat(partial_tensors, dim=1)
local_concat = torch.cat([t1, t2, t3], dim=1)
self.assertEqual(local_concat.size(), partial_concat.size())
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_cat_errors(self):
with self.assertRaisesRegex(
RuntimeError, 'All inputs need to be an instance of _PartialTensor'
):
torch.cat([_PartialTensor(torch.rand(10)), torch.rand(10)])
with self.assertRaisesRegex(
RuntimeError, 'reduce_ops need to be the same'
):
torch.cat([_PartialTensor(torch.rand(10)), _PartialTensor(torch.rand(10), reduce_op=dist.ReduceOp.MAX)])
with self.assertRaisesRegex(
RuntimeError, '"out" kwarg is not supported'
):
torch.cat([_PartialTensor(torch.rand(10)), _PartialTensor(torch.rand(10))], out=torch.rand(10))
if __name__ == "__main__":
run_tests()
|