1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
# Owner(s): ["oncall: distributed"]
import io
import torch
import torch.distributed._shard.sharded_tensor as sharded_tensor
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed._shard import _shard_tensor
from torch.distributed._shard.replicated_tensor import ReplicatedTensor
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.testing._internal.common_distributed import (
requires_nccl,
skip_if_lt_x_gpu,
)
from torch.testing._internal.distributed._shard.sharded_tensor import (
ShardedTensorTestBase,
with_comms,
)
from torch.testing._internal.distributed._shard.sharded_tensor._test_ops_common import (
gen_binary_op_func
)
from torch.testing._internal.distributed._shard.sharded_tensor import TEST_GPU_NUM
class TestReplicatedTensor(ShardedTensorTestBase):
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_replicated_tensor_basics(self):
local_tensor = torch.ones(3, 3, device=f"cuda:{self.rank}") * 4
replica_tensor = ReplicatedTensor(local_tensor)
# validate it's a replicated tensor by checking values on all rank
validated = replica_tensor.validate()
self.assertEqual(validated, True)
res = replica_tensor + 2
self.assertIsInstance(res, torch.Tensor)
self.assertNotIsInstance(res, ReplicatedTensor)
self.assertEqual(res, torch.ones(3, 3) * 6)
# modify local tensor on certain rank, and test if validation raise
if self.rank == 2:
local_tensor += 3
with self.assertRaisesRegex(ValueError, 'have different values'):
replica_tensor.validate()
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_replicated_tensor_inter_op_replicated_tensor(self):
local_tensor = torch.ones(3, 3, device=f"cuda:{self.rank}")
replica_tensor1 = ReplicatedTensor(local_tensor * 4)
replica_tensor2 = ReplicatedTensor(local_tensor * 6)
new_tensor = replica_tensor1 * replica_tensor2
self.assertIsInstance(new_tensor, ReplicatedTensor)
self.assertEqual(new_tensor, torch.ones(3, 3) * 24)
# test replicated tensor inter-op with different pgs
new_pg = dist.new_group(ranks=[1, 2, 3])
replica_tensor_new_group = ReplicatedTensor(local_tensor * 3, process_group=new_pg)
with self.assertRaisesRegex(RuntimeError, 'must be in the same'):
replica_tensor_new_group * replica_tensor1
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_replicated_tensor_inter_op_tensor(self):
local_tensor = torch.ones(3, 3, device=f"cuda:{self.rank}") * 4
replica_tensor = ReplicatedTensor(local_tensor)
local_rand_tensor = torch.randn(3, 3, device=f"cuda:{self.rank}")
new_tensor = replica_tensor + local_rand_tensor
self.assertIsInstance(new_tensor, torch.Tensor)
self.assertNotIsInstance(new_tensor, ReplicatedTensor)
self.assertEqual(new_tensor, local_tensor + local_rand_tensor)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_replicated_tensor_inter_op_sharded_tensor(self):
torch.manual_seed(self.rank)
local_tensor1 = torch.rand(12, 3, device=f"cuda:{self.rank}") * 4
local_tensor2 = torch.ones(12, 3, device=f"cuda:{self.rank}") * 4
spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
st = _shard_tensor(local_tensor1, spec, src_rank=0)
replica_tensor = ReplicatedTensor(local_tensor2)
ops = ["torch.add", "torch.sub", "torch.mul", "torch.div", "+", "-", "*", "/"]
for op in ops:
binary_op = gen_binary_op_func(op)
res = binary_op(st, replica_tensor)
self.assertIsInstance(res, sharded_tensor.ShardedTensor)
self.assertNotIsInstance(res, ReplicatedTensor)
output = torch.empty((12, 3), device=self.rank) if self.rank == 0 else None
res.gather(dst=0, out=output)
if self.rank == 0:
local_output = binary_op(local_tensor1, local_tensor2)
self.assertEqual(output, local_output)
# reflective
reflect_res = binary_op(replica_tensor, st)
self.assertIsInstance(reflect_res, sharded_tensor.ShardedTensor)
self.assertNotIsInstance(reflect_res, ReplicatedTensor)
reflect_output = torch.empty((12, 3), device=self.rank) if self.rank == 0 else None
reflect_res.gather(dst=0, out=reflect_output)
if self.rank == 0:
reflect_local_output = binary_op(local_tensor2, local_tensor1)
self.assertEqual(reflect_output, reflect_local_output)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_replicated_tensor_implicit_broadcasting(self):
# use same seed
torch.manual_seed(self.rank)
# test implicit broadcasting
local_tensor1 = torch.rand(12, 3, device=f"cuda:{self.rank}") * 4
# we use size (3) to trigger the implicit broadcasting logic
# and it will fail if implicit broadcasting not happen.
local_tensor2 = torch.ones(3, device=f"cuda:{self.rank}")
spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
st = _shard_tensor(local_tensor1, spec, src_rank=0)
replica_tensor = ReplicatedTensor(local_tensor2)
ops = ["torch.add", "torch.sub", "torch.mul", "torch.div", "+", "-", "*", "/"]
for op in ops:
binary_op = gen_binary_op_func(op)
# replicated tensor should automatically broadcasted
res = binary_op(st, replica_tensor)
self.assertIsInstance(res, sharded_tensor.ShardedTensor)
output = torch.empty((12, 3), device=self.rank) if self.rank == 0 else None
res.gather(dst=0, out=output)
if self.rank == 0:
local_output = binary_op(local_tensor1, local_tensor2)
self.assertEqual(output, local_output)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_replicated_tensor_inter_op_sharded_tensor_errors(self):
local_tensor = torch.ones(3, 3, device=f"cuda:{self.rank}") * 4
replica_tensor = ReplicatedTensor(local_tensor)
torch.manual_seed(self.rank)
spec = ChunkShardingSpec(
dim=0,
placements=[
"rank:0/cuda:0",
"rank:1/cuda:1",
"rank:2/cuda:2",
"rank:3/cuda:3",
],
)
st1 = sharded_tensor.rand(spec, (20, 3, 3))
st2 = sharded_tensor.rand(spec, (30, 3, 3))
with self.assertRaisesRegex(RuntimeError, 'Implicit broadcasting'):
st1 + st2
with self.assertRaisesRegex(RuntimeError, 'not supported for ShardedTensor'):
st1 % replica_tensor
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_with_ddp(self):
# Test Replicated params for DDP
replica_tensor = ReplicatedTensor(torch.rand(4, 8, device=self.rank))
model = torch.nn.Linear(8, 2).cuda(self.rank)
optim = torch.optim.SGD(model.parameters(), lr=0.1)
ddp = DDP(model)
# Test module.parameters.
params = list(ddp.parameters())
self.assertEqual(2, len(params))
self.assertEqual(ddp.module.weight, params[0])
self.assertEqual(ddp.module.bias, params[1])
params = list(model.parameters())
self.assertEqual(2, len(params))
self.assertEqual(model.weight, params[0])
self.assertEqual(model.bias, params[1])
# Validate output
out = ddp(replica_tensor)
self.assertIsInstance(out, ReplicatedTensor)
# Test backward and optimizer.
# Validate backward.
out.sum().backward()
self.assertIsNotNone(model.weight.grad)
self.assertIsNotNone(model.bias.grad)
self.assertIsNotNone(ddp.module.weight.grad)
self.assertIsNotNone(ddp.module.bias.grad)
original_params = []
for param_group in optim.param_groups:
for original_param in param_group['params']:
self.assertIsNotNone(original_param.grad)
original_params.append(original_param)
self.assertEqual(model.weight.grad, original_params[0].grad)
self.assertEqual(model.bias.grad, original_params[1].grad)
self.assertEqual(model.weight.grad, ddp.module.weight.grad)
self.assertEqual(model.bias.grad, ddp.module.bias.grad)
# Validate optimizer.
optim.step()
self.assertEqual(model.weight, ddp.module.weight)
self.assertEqual(model.weight, original_params[0])
self.assertEqual(model.bias, ddp.module.bias)
self.assertEqual(model.bias, original_params[1])
# Validate zero_grad
optim.zero_grad()
self.assertEqual(model.weight.grad, torch.zeros_like(model.weight.grad))
self.assertEqual(model.weight.grad, ddp.module.weight.grad)
self.assertEqual(model.weight.grad, original_params[0].grad)
self.assertEqual(model.bias.grad, torch.zeros_like(model.bias.grad))
self.assertEqual(model.bias.grad, ddp.module.bias.grad)
self.assertEqual(model.bias.grad, original_params[1].grad)
# Validate zero_grad set_to_none
optim.zero_grad(set_to_none=True)
self.assertIsNone(model.weight.grad)
self.assertEqual(model.weight.grad, ddp.module.weight.grad)
self.assertEqual(model.weight.grad, original_params[0].grad)
self.assertIsNone(model.bias.grad)
self.assertEqual(model.bias.grad, ddp.module.bias.grad)
self.assertEqual(model.bias.grad, original_params[1].grad)
# Multiple forward passes.
for _ in range(5):
out = ddp(replica_tensor)
self.assertIsInstance(out, ReplicatedTensor)
# Test with context manager.
from torch.nn.parallel._replicated_tensor_ddp_utils import _ddp_replicated_tensor
with _ddp_replicated_tensor(False):
for _ in range(5):
with _ddp_replicated_tensor(True):
ddp = DDP(model)
out = ddp(replica_tensor)
self.assertIsInstance(out, ReplicatedTensor)
# Test save and load.
with _ddp_replicated_tensor(False):
ddp = DDP(model)
expected_state_dict = ddp.state_dict()
buffer = io.BytesIO()
torch.save(ddp, buffer)
buffer.seek(0)
obj = torch.load(buffer)
self.assertEqual(expected_state_dict, obj.state_dict())
with _ddp_replicated_tensor(True):
ddp = DDP(model)
buffer = io.BytesIO()
torch.save(ddp, buffer)
buffer.seek(0)
obj = torch.load(buffer)
self.assertEqual(expected_state_dict, obj.state_dict())
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_unsqueeze(self):
local_tensor = torch.rand(3, 3, device=self.rank)
replicated_tensor = ReplicatedTensor(local_tensor)
unsqueezed_replicated_tensor = replicated_tensor.unsqueeze(0)
unsqueezed_local_tensor = local_tensor.unsqueeze(0)
self.assertIsInstance(unsqueezed_replicated_tensor, ReplicatedTensor)
self.assertIsInstance(torch.unsqueeze(replicated_tensor, 0), ReplicatedTensor)
self.assertEqual(unsqueezed_local_tensor, unsqueezed_replicated_tensor)
self.assertEqual(torch.unsqueeze(replicated_tensor, 0), unsqueezed_replicated_tensor)
@with_comms(init_rpc=False)
@skip_if_lt_x_gpu(TEST_GPU_NUM)
@requires_nccl()
def test_getitem(self):
local_tensor = torch.rand(3, 3, device=self.rank)
replicated_tensor = ReplicatedTensor(local_tensor)
replicated_tensor_view = replicated_tensor[0]
local_tensor_view = local_tensor[0]
self.assertIsInstance(replicated_tensor_view, ReplicatedTensor)
self.assertEqual(local_tensor_view, replicated_tensor_view)
|