File: test_ddp_hooks.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (239 lines) | stat: -rw-r--r-- 8,024 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Owner(s): ["oncall: distributed"]

import os
import sys

import torch
from torch import nn
import torch.distributed as dist

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

from torch.distributed.algorithms.ddp_comm_hooks import (
    DDPCommHookType,
    register_ddp_comm_hook,
)
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
    MultiProcessTestCase,
    requires_nccl,
    skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
    run_tests,
    TEST_WITH_DEV_DBG_ASAN,
)

if TEST_WITH_DEV_DBG_ASAN:
    print("Multiprocessing spawn is not compatible with dev/dbg asan", file=sys.stderr)
    sys.exit(0)

def gpus_for_rank(world_size):
    visible_devices = list(range(torch.cuda.device_count()))
    gpus_per_process = torch.cuda.device_count() // world_size
    gpus_for_rank = []
    for rank in range(world_size):
        gpus_for_rank.append(
            visible_devices[rank * gpus_per_process : (rank + 1) * gpus_per_process]
        )
    return gpus_for_rank


class Task(nn.Module):
    def __init__(self):
        super(Task, self).__init__()
        torch.manual_seed(0)
        self.p = nn.Parameter(torch.randn(40, 20))

    def forward(self, x):
        return self.p * x


class TestDdpCommHook(nn.Module):
    def __init__(self):
        super().__init__()
        self.t0 = Task()

    def forward(self, x, rank):
        return self.t0(x ** (1 + rank))


class DistributedDataParallelCommHookTest(MultiProcessTestCase):
    def setUp(self):
        super(DistributedDataParallelCommHookTest, self).setUp()
        self._spawn_processes()

    def tearDown(self):
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    @property
    def world_size(self):
        return 2

    def _local_model(self):
        local_model = TestDdpCommHook().cpu()

        return local_model

    def _get_grads(self, process_group, hook_type=None):
        device_id = gpus_for_rank(self.world_size)[self.rank][0]
        gpu_model = DistributedDataParallel(
            TestDdpCommHook().to(device_id),
            device_ids=[device_id],
            process_group=process_group,
        )

        # Register DDP Communication Hook if defined
        if hook_type is not None:
            register_ddp_comm_hook(
                comm_hook_type=hook_type, model=gpu_model, state=process_group
            )

        return self._run_and_get_grads(gpu_model)

    def _run_and_get_grads(self, model):
        torch.manual_seed(2020)
        input = torch.randn(40, 20)
        # Run forward
        output = model(input, self.rank)

        # Run backward
        output.mean().backward()

        # The only layer
        param = next(model.parameters())
        return param.grad

    @requires_nccl()
    @skip_if_lt_x_gpu(2)
    def test_ddp_comm_hook_allreduce_hook(self):
        """
        This unit test verifies the ``allreduce`` hook registered case gives same result
        with no hook registered case.
        """
        store = dist.FileStore(self.file_name, self.world_size)
        process_group = dist.ProcessGroupNCCL(store, self.rank, self.world_size)

        # No hook registered case, get the reference grads.
        reference_grads = self._get_grads(process_group, None)
        # Register hook case, get the hook grads.
        hook_grads = self._get_grads(process_group, DDPCommHookType.ALLREDUCE)

        torch.testing.assert_allclose(hook_grads, reference_grads, rtol=1e-5, atol=0)

    @requires_nccl()
    @skip_if_lt_x_gpu(2)
    def test_ddp_comm_hook_fp16compress_hook(self):
        """
        This unit test verifies the ``fp16 compress`` hook registered case
        gives close result with no hook registered case.
        """
        store = dist.FileStore(self.file_name, self.world_size)
        process_group = dist.ProcessGroupNCCL(store, self.rank, self.world_size)

        # No hook registered case, get the reference grads.
        reference_grads = self._get_grads(process_group, None)
        # Register hook case, get the hook grads.
        hook_grads = self._get_grads(process_group, DDPCommHookType.FP16_COMPRESS)

        torch.testing.assert_allclose(hook_grads, reference_grads, rtol=1e-5, atol=1e-4)

    @requires_nccl()
    @skip_if_lt_x_gpu(2)
    def test_ddp_comm_hook_quantize_per_tensor_hook(self):
        """
        This unit test verifies the ``quantize per tensor`` hook registered case
        gives close result with no hook registered case.
        """
        store = dist.FileStore(self.file_name, self.world_size)
        process_group = dist.ProcessGroupNCCL(store, self.rank, self.world_size)

        # No hook registered case, get the reference grads.
        reference_grads = self._get_grads(process_group, None)
        # Register hook case, get the hook grads.
        hook_grads = self._get_grads(process_group, DDPCommHookType.QUANTIZE_PER_TENSOR)

        torch.testing.assert_allclose(hook_grads, reference_grads, rtol=1e-5, atol=1e-4)

    @requires_nccl()
    @skip_if_lt_x_gpu(2)
    def test_ddp_comm_hook_quantize_per_channel_hook(self):
        """
        This unit test verifies the ``quantize per channel`` hook registered case
        gives close result with no hook registered case.
        """
        store = dist.FileStore(self.file_name, self.world_size)
        process_group = dist.ProcessGroupNCCL(store, self.rank, self.world_size)

        # No hook registered case, get the reference grads.
        reference_grads = self._get_grads(process_group, None)
        # Register hook case, get the hook grads.
        hook_grads = self._get_grads(
            process_group, DDPCommHookType.QUANTIZE_PER_CHANNEL
        )

        torch.testing.assert_allclose(hook_grads, reference_grads, rtol=1e-5, atol=1e-4)


    @requires_nccl()
    @skip_if_lt_x_gpu(2)
    def test_ddp_comm_hook_noop_hook(self):
        """
        This unit test verifies the ``noop`` hook registered case and a subsequent allreduce
        gives same result with no hook registered case.
        """
        store = dist.FileStore(self.file_name, self.world_size)
        process_group = dist.ProcessGroupNCCL(store, self.rank, self.world_size)

        # No hook registered case, get the reference grads.
        reference_grads = self._get_grads(process_group, None)
        # Register hook case, get the hook grads.
        hook_grads = self._get_grads(process_group, DDPCommHookType.NOOP)
        # Apply a subsequent allreduce to average grads.
        hook_grads.div_(self.world_size)
        dist.all_reduce(hook_grads, group=process_group)

        torch.testing.assert_allclose(hook_grads, reference_grads, rtol=1e-5, atol=0)

    @requires_nccl()
    @skip_if_lt_x_gpu(2)
    def test_is_last_hook(self):

        store = dist.FileStore(self.file_name, self.world_size)
        process_group = dist.ProcessGroupNCCL(store, self.rank, self.world_size)

        def hook(flags, bucket):
            flags.append(bucket.is_last())
            fut = torch.futures.Future()
            fut.set_result(bucket.buffer())
            return fut

        flags = []
        device_id = gpus_for_rank(self.world_size)[self.rank][0]
        model = nn.Sequential(
            nn.Linear(2, 4000, bias=False),
            *[nn.Linear(4000, 4000, bias=False) for _ in range(10)]
        )
        gpu_model = DistributedDataParallel(
            model.to(device_id),
            device_ids=[device_id],
            process_group=process_group,
        )
        gpu_model.register_comm_hook(state=flags, hook=hook)
        input = torch.randn(10, 2)
        gpu_model(input).sum().backward()
        self.assertTrue(flags[-1])
        self.assertFalse(any(flags[:-1]))


if __name__ == "__main__":
    assert (
        not torch.cuda._initialized
    ), "test_distributed must not have initialized CUDA context on main process"

    run_tests()