File: test_quantization.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (242 lines) | stat: -rw-r--r-- 10,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Owner(s): ["oncall: distributed"]

import torch
import os
import torch.cuda
import sys
import torch.distributed as dist
import torch.distributed.algorithms._quantization.quantization as quant
from torch.distributed.algorithms._quantization.quantization import DQuantType
from torch.testing._internal.common_distributed import (
    MultiProcessTestCase,
    init_multigpu_helper,
    requires_gloo,
    skip_if_rocm,
    skip_if_lt_x_gpu,
    requires_nccl,
)
from torch.testing._internal.common_utils import sandcastle_skip_if, run_tests, TEST_WITH_DEV_DBG_ASAN, NO_MULTIPROCESSING_SPAWN

torch.backends.cuda.matmul.allow_tf32 = False

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

def _build_tensor(size, value=None, dtype=torch.float, device_id=None):
    if value is None:
        value = size
    if device_id is None:
        return torch.empty(size, dtype=dtype).fill_(value)
    else:
        return torch.empty(size, dtype=dtype).fill_(value).cuda(device_id)
if TEST_WITH_DEV_DBG_ASAN:
    print("Skip dev-asan as torch + multiprocessing spawn have known issues", file=sys.stderr)
    sys.exit(0)

if NO_MULTIPROCESSING_SPAWN:
    print("Spawn not available, skipping tests.", file=sys.stderr)
    sys.exit(0)

BACKEND = os.environ["BACKEND"]
if BACKEND == "gloo" or BACKEND == "nccl":
    class DistQuantizationTests(MultiProcessTestCase):

        def setUp(self):
            super(DistQuantizationTests, self).setUp()
            self._spawn_processes()
            torch.backends.cudnn.flags(allow_tf32=False).__enter__()

        def tearDown(self):
            super(DistQuantizationTests, self).tearDown()
            try:
                os.remove(self.file_name)
            except OSError:
                pass

        @property
        def op_timeout_sec(self):
            return 1

        @property
        def world_size(self):
            return int(os.environ["WORLD_SIZE"])

        @requires_gloo()
        @sandcastle_skip_if(BACKEND != "gloo", "Only gloo backend supports all_gather_fp16")
        def test_all_gather_fp16(self):
            store = dist.FileStore(self.file_name, self.world_size)
            dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
            device = torch.device(f"cuda:{self.rank}")
            group = list(range(0, self.world_size))
            group_id = dist.group.WORLD
            self._test_all_gather(group, group_id, self.rank, dtype=torch.float32, qtype=DQuantType.FP16)

        @requires_gloo()
        @sandcastle_skip_if(BACKEND != "gloo", "Only gloo backend supports all_gather_fp16")
        def test_all_gather_bfp16(self):
            store = dist.FileStore(self.file_name, self.world_size)
            dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
            device = torch.device(f"cuda:{self.rank}")
            group = list(range(0, self.world_size))
            group_id = dist.group.WORLD
            self._test_all_gather(group, group_id, self.rank, dtype=torch.float32, qtype=DQuantType.BFP16)

        @requires_nccl()
        @sandcastle_skip_if(BACKEND != "nccl", "Only nccl backend supports all_to_all_fp16")
        @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"]))
        @skip_if_rocm
        def test_all_to_all_fp16(self):
            store = dist.FileStore(self.file_name, self.world_size)
            dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='nccl')
            device = torch.device(f"cuda:{self.rank}")
            group = list(range(0, self.world_size))
            group_id = dist.new_group(range(self.world_size))
            rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND)
            self._test_all_to_all(
                group,
                group_id,
                self.rank,
                cuda=True,
                rank_to_GPU=rank_to_GPU,
                dtype=torch.float32,
                qtype=DQuantType.FP16)

        @requires_nccl()
        @sandcastle_skip_if(BACKEND != "nccl", "Only nccl backend supports all_to_all_fp16")
        @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"]))
        @skip_if_rocm
        def test_all_to_all_bfp16(self):
            store = dist.FileStore(self.file_name, self.world_size)
            dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='nccl')
            device = torch.device(f"cuda:{self.rank}")
            group = list(range(0, self.world_size))
            group_id = dist.new_group(range(self.world_size))
            rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND)
            self._test_all_to_all(
                group,
                group_id,
                self.rank,
                cuda=True,
                rank_to_GPU=rank_to_GPU,
                dtype=torch.float32,
                qtype=DQuantType.BFP16)

        @requires_nccl()
        @sandcastle_skip_if(BACKEND != "nccl", "Only nccl backend supports all_to_all_single_fp16")
        @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"]))
        def test_all_to_all_single_fp16(self):
            store = dist.FileStore(self.file_name, self.world_size)
            dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='nccl')
            device = torch.device(f"cuda:{self.rank}")
            group = list(range(0, self.world_size))
            group_id = dist.new_group(range(self.world_size))
            rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND)
            self._test_all_to_all_single(
                group,
                group_id,
                self.rank,
                cuda=True,
                rank_to_GPU=rank_to_GPU,
                dtype=torch.float32,
                qtype=DQuantType.FP16
            )

        @requires_nccl()
        @sandcastle_skip_if(BACKEND != "nccl", "Only nccl backend supports all_to_all_single_bfp16")
        @skip_if_lt_x_gpu(int(os.environ["WORLD_SIZE"]))
        def test_all_to_all_single_bfp16(self):
            store = dist.FileStore(self.file_name, self.world_size)
            dist.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='nccl')
            device = torch.device(f"cuda:{self.rank}")
            group = list(range(0, self.world_size))
            group_id = dist.new_group(range(self.world_size))
            rank_to_GPU = init_multigpu_helper(self.world_size, BACKEND)
            self._test_all_to_all_single(
                group,
                group_id,
                self.rank,
                cuda=True,
                rank_to_GPU=rank_to_GPU,
                dtype=torch.float32,
                qtype=DQuantType.BFP16
            )

        def _test_all_gather(
                self, group, group_id, rank, cuda=False, rank_to_GPU=None, dtype=torch.float, qtype=None):
            for dest in group:
                tensor = _build_tensor([dest + 1, dest + 1], rank, dtype=dtype)
                tensors = [_build_tensor([dest + 1, dest + 1], -1, dtype=dtype) for i in group]
                expected_tensors = [
                    _build_tensor([dest + 1, dest + 1], i, dtype=dtype) for i in group
                ]
                if cuda:
                    tensor = tensor.cuda(rank_to_GPU[rank][0])
                    tensors = [t.cuda(rank_to_GPU[rank][0]) for t in tensors]
                if tensors[0].dtype == torch.complex64:
                    tensor_shapes = [torch.view_as_real(tensors[0]).shape]
                else:
                    tensor_shapes = [tensors[0].shape]
                allgather = quant.auto_quantize(dist.all_gather, qtype, quant_loss=None)
                allgather(tensors, tensor, group=group_id, async_op=False)

                for t1, t2 in zip(tensors, expected_tensors):
                    self.assertEqual(t1, t2)

        def _test_all_to_all(
            self,
            group,
            group_id,
            rank,
            cuda=False,
            rank_to_GPU=None,
            dtype=torch.float,
            qtype=None
        ):
            if group_id is not None:
                size = len(group)
                in_splits = [i + 1 for i in group]
                in_tensors = [
                    torch.ones([in_splits[i], size], dtype=dtype) * rank
                    for i, _ in enumerate(group)
                ]
                out_tensors = [
                    torch.ones([(rank + 1), size], dtype=dtype) for _ in group
                ]
                expected_tensors = [
                    torch.ones([rank + 1, size], dtype=dtype) * i for i in group
                ]
                if cuda:
                    in_tensors = [t.cuda(rank_to_GPU[rank][0]) for t in in_tensors]
                    expected_tensors = [
                        t.cuda(rank_to_GPU[rank][0]) for t in expected_tensors
                    ]
                    out_tensors = [t.cuda(rank_to_GPU[rank][0]) for t in out_tensors]
                quantize_alltoall = quant.auto_quantize(dist.all_to_all, qtype, quant_loss=None)
                quantize_alltoall(out_tensors, in_tensors, group=group_id)
                for t1, t2 in zip(out_tensors, expected_tensors):
                    self.assertEqual(t1, t2)

        def _test_all_to_all_single(
            self, group, group_id, rank, cuda=False, rank_to_GPU=None, dtype=torch.float, qtype=DQuantType.FP16
        ):
            if group_id is not None:
                size = len(group)
                in_splits = [i + 1 for i in group]
                out_splits = [rank + 1 for _ in group]
                in_tensor = torch.ones([sum(in_splits), size], dtype=dtype) * rank
                out_tensor = torch.ones([(rank + 1) * size, size], dtype=dtype)
                expected_tensor = torch.cat(
                    [torch.ones([rank + 1, size], dtype=dtype) * i for i in group]
                )
                if cuda:
                    rank_to_GPU = rank_to_GPU[rank][0]
                    in_tensor = in_tensor.cuda(rank_to_GPU)
                    expected_tensor = expected_tensor.cuda(rank_to_GPU)
                    out_tensor = out_tensor.cuda(rank_to_GPU)
                    quantize_alltoall_single = quant.auto_quantize(dist.all_to_all_single, qtype, quant_loss=None)
                    quantize_alltoall_single(out_tensor, in_tensor, out_splits=out_splits, in_splits=in_splits, group=group_id)
                    self.assertEqual(out_tensor, expected_tensor)

if __name__ == "__main__":
    run_tests()