File: test_join.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (512 lines) | stat: -rw-r--r-- 16,902 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# Owner(s): ["oncall: distributed"]

import contextlib
import os
import sys
from typing import Any, Optional

import torch
import torch.distributed as dist

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.testing._internal.common_distributed import (
    MultiProcessTestCase,
    require_n_gpus_for_nccl_backend,
)
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN

if TEST_WITH_DEV_DBG_ASAN:
    print("Skip dev-asan as torch + multiprocessing spawn have known issues", file=sys.stderr)
    sys.exit(0)

BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO
WORLD_SIZE = min(4, max(2, torch.cuda.device_count()))

# Constants used for testing post-hooks
BEFORE_CONSTANT = 41
AFTER_CONSTANT = 42


class AllReducerJoinHook(JoinHook):
    r"""
    Join hook for :class:`AllReducer`.

    Arguments:
        allreducer (AllReducer): the :class:`AllReducer` object using this
            hook.
        num_allreduces (int): the number of all-reduces to shadow per
            iteration.
        run_post_hook (bool): a flag enabling the post-hook logic.
    """
    def __init__(
        self,
        allreducer,
        num_allreduces,
        run_post_hook
    ):
        self.allreducer = allreducer
        self.num_allreduces = num_allreduces
        self.run_post_hook = run_post_hook

    def main_hook(self):
        r"""
        Shadows each all-reduce; the number of all-reduces is passed into the
        constructor as ``num_allreduces``.
        """
        device = self.allreducer.device
        for _ in range(self.num_allreduces):
            t = torch.zeros(1, device=device)
            dist.all_reduce(t)

    def post_hook(self, is_last_joiner: bool):
        r"""
        Broadcasts a tensor containing a magic constant ``AFTER_CONSTANT`` from
        the last joiner to all other processes.
        """
        if not self.run_post_hook:
            return
        rank = dist.get_rank(self.allreducer.process_group)
        common_rank = self.allreducer.find_common_rank(rank, is_last_joiner)
        device = self.allreducer.device
        if rank == common_rank:
            self.allreducer.post_hook_tensor = torch.tensor([AFTER_CONSTANT], device=device)
        dist.broadcast(self.allreducer.post_hook_tensor, src=common_rank)


class AllReducer(Joinable):
    r"""
    Example :class:`Joinable` that performs some number of all-reduces as its
    per-iteration collective communication.
    """
    def __init__(self, device, process_group):
        super(AllReducer, self).__init__()
        self.device = device
        self.process_group = process_group
        self.post_hook_tensor = torch.tensor([BEFORE_CONSTANT], device=self.device)

    def __call__(self, num_allreduces=1):
        r"""
        All-reduces a dim-1 one tensor ``num_allreduces``-many times, and
        returns the total result.
        """
        Join.notify_join_context(self)
        device = self.device
        total = 0
        for _ in range(num_allreduces):
            t = torch.ones(1, device=device)
            dist.all_reduce(t)
            total += t.item()
        return total

    def join_hook(self, **kwargs) -> JoinHook:
        r"""
        Returns a join hook that shadows some number of all-reduces; by default,
        this number is 1.
        """
        num_allreduces = kwargs.get("num_allreduces", 1)
        run_post_hook = kwargs.get("run_post_hooks", False)
        return AllReducerJoinHook(
            self,
            num_allreduces,
            run_post_hook
        )

    @property
    def join_device(self) -> torch.device:
        return self.device

    @property
    def join_process_group(self) -> Any:
        return self.process_group

    def find_common_rank(self, rank, to_consider):
        r"""
        Returns the max rank of the ones to consider over the process group.
        """
        common_rank = torch.tensor(
            [rank if to_consider else -1],
            device=self.device
        )
        dist.all_reduce(common_rank, op=dist.ReduceOp.MAX, group=self.process_group)
        common_rank = common_rank.item()
        assert common_rank >= 0
        return common_rank

class TestJoin(MultiProcessTestCase):
    r"""Test cases for the generic join context."""
    def setUp(self):
        super(TestJoin, self).setUp()
        os.environ["WORLD_SIZE"] = str(self.world_size)
        os.environ["BACKEND"] = BACKEND
        self._spawn_processes()

    @property
    def device(self):
        return torch.device(self.rank) if BACKEND == dist.Backend.NCCL \
            else torch.device("cpu")

    @property
    def world_size(self):
        return WORLD_SIZE

    @property
    def process_group(self):
        return dist.group.WORLD

    def tearDown(self):
        try:
            dist.destroy_process_group()
        except AssertionError:
            pass
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    def dist_init(self, rank, world_size, backend=BACKEND):
        store = dist.FileStore(self.file_name, world_size)
        return dist.init_process_group(
            backend=backend,
            store=store,
            rank=rank,
            world_size=world_size
        )

    def construct_uneven_inputs(self, base, offset, device=None):
        r"""
        Returns uneven inputs: rank i gets ``base`` + i * ``offset`` inputs.
        """
        if device is None:
            device = self.device
        return [torch.zeros(1, device=device) for _ in range(base + self.rank * offset)]

    def construct_even_inputs(self, base, device=None):
        r"""Returns even inputs: each rank gets ``base`` inputs."""
        if device is None:
            device = self.device
        return [torch.zeros(1, device=device) for _ in range(base)]

    @property
    def base_num_inputs(self):
        r"""Base number of inputs to be used by all ranks."""
        return 3

    @property
    def offset(self):
        r"""Rank i gets i * ``offset`` additional inputs."""
        return 1

    def _test_join_base(
        self,
        uneven_inputs: bool,
        num_joinables: int,
        enable: bool,
        throw_on_early_termination: bool,
        num_allreduces: int,
        run_post_hooks: bool,
        expected_total: Optional[int] = None,
    ):
        r"""
        Skeleton for all :class:`Join` tests.

        Arguments:
            uneven_inputs (bool): ``True`` to use uneven inputs; ``False``
                otherwise.
            num_joinables (int): number of :class:`AllReducer` s to construct.
            enable (bool): ``True`` to enable the join context manager;
                ``False`` otherwise.
            throw_on_early_termination (bool): ``True`` to raise an exception
                upon detecting uneven inputs; ``False`` otherwise.
            num_allreduces (int): number of all-reduces to perform per input.
            run_post_hooks (bool): ``True`` to run post-hooks; ``False``
                otherwise.
            expected_total (Optional[int]): ``None`` to not check the expected
                all-reduce total; otherwise, the expected total; default is
                ``None``.
        """
        self.dist_init(self.rank, self.world_size)

        allreducers = [
            AllReducer(self.device, self.process_group)
            for _ in range(num_joinables)
        ]
        for allreducer in allreducers:
            self.assertEqual(allreducer.post_hook_tensor.item(), BEFORE_CONSTANT)

        inputs = self.construct_uneven_inputs(self.base_num_inputs, self.offset) \
            if uneven_inputs \
            else self.construct_even_inputs(self.base_num_inputs)
        allreduce_total = 0

        # Expect a `RuntimeError` if `throw_on_early_termination=True`
        # Rank 0 exhausts its inputs first
        expected_msg = "Rank 0 exhausted all inputs." if self.rank == 0 \
            else "Detected at least one rank that exhausted inputs. " \
            "Throwing across all ranks."
        with self.assertRaisesRegex(
            RuntimeError,
            expected_msg
        ) if throw_on_early_termination else contextlib.suppress():
            with Join(
                allreducers,
                enable=enable,
                throw_on_early_termination=throw_on_early_termination,
                num_allreduces=num_allreduces,
                run_post_hooks=run_post_hooks
            ):
                for _ in inputs:
                    for allreducer in allreducers:
                        allreduce_total += allreducer(num_allreduces)

        if throw_on_early_termination:
            return

        # Check `expected_total` if not `None`
        if expected_total:
            self.assertEqual(allreduce_total, expected_total)

        # All `AllReduce` instances should receive the updated
        # `post_hook_tensor` from the last-joined process
        if run_post_hooks:
            for allreducer in allreducers:
                self.assertEqual(allreducer.post_hook_tensor.item(), AFTER_CONSTANT)

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_single_joinable_main_hooks(self):
        r"""Tests the main hooks of a single :class:`Joinable`."""
        num_joinables = 1
        num_allreduces = 1
        run_post_hooks = False
        # Non-joined processes all-reduce a 1, so this rank's all-reduce total
        # should be precisely equal to the total number of inputs processed
        # before it joined
        expected_total = self.world_size * self.base_num_inputs
        # Rank i runs for i additional iterations
        for num_joined in range(1, self.rank + 1):
            expected_total += (self.world_size - num_joined) * self.offset

        self._test_join_base(
            uneven_inputs=True,
            num_joinables=num_joinables,
            enable=True,
            throw_on_early_termination=False,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=expected_total
        )

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_single_joinable_post_hooks(self):
        r"""Tests the post-hooks of a single :class:`Joinable`."""
        num_joinables = 1
        num_allreduces = 0  # set to 0 to skip the main hooks
        run_post_hooks = False

        self._test_join_base(
            uneven_inputs=True,
            num_joinables=num_joinables,
            enable=True,
            throw_on_early_termination=False,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=None
        )

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_single_joinable(self):
        r"""
        Tests the main hooks and post-hooks of a single :class:`Joinable`
        together.

        This combines ``test_single_joinable_main_hooks()`` and
        ``test_single_joinable_post_hooks()`` into a single test to ensure that
        main hooks and post-hooks operate correctly together.
        """
        num_joinables = 1
        num_allreduces = 1
        run_post_hooks = True

        expected_total = self.world_size * self.base_num_inputs
        for num_joined in range(1, self.rank + 1):
            expected_total += (self.world_size - num_joined) * self.offset

        self._test_join_base(
            uneven_inputs=True,
            num_joinables=num_joinables,
            enable=True,
            throw_on_early_termination=False,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=expected_total
        )

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_multiple_joinables(self):
        r"""
        Tests the main hooks and post-hooks of multiple :class:`Joinable` s
        together.

        This generalizes ``test_single_joinable()`` to multiple
        :class:`Joinable` s.
        """
        num_joinables = 3
        num_allreduces = 1
        run_post_hooks = True

        expected_total = self.world_size * self.base_num_inputs
        for num_joined in range(1, self.rank + 1):
            expected_total += (self.world_size - num_joined) * self.offset
        # The expected total is now multiplied by a factor of `NUM_JOINABLES`
        expected_total *= num_joinables

        self._test_join_base(
            uneven_inputs=True,
            num_joinables=num_joinables,
            enable=True,
            throw_on_early_termination=False,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=expected_total
        )

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_single_joinable_disable(self):
        r"""Tests ``enable=False`` for a single :class:`Joinable`."""
        num_joinables = 1
        num_allreduces = 1
        uneven_inputs = False
        enable = False
        run_post_hooks = False

        expected_total = self.world_size * self.base_num_inputs

        self._test_join_base(
            uneven_inputs=uneven_inputs,
            num_joinables=num_joinables,
            enable=enable,
            throw_on_early_termination=False,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=expected_total
        )

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_multiple_joinable_disable(self):
        r"""
        Tests ``enable=False`` for multiple :class:`Joinable` s.

        This generalizes ``test_single_joinable_disable`` to multiple
        :class:`Joinable` s.
        """
        num_joinables = 3
        num_allreduces = 1
        uneven_inputs = False
        enable = False
        run_post_hooks = False

        expected_total = self.world_size * self.base_num_inputs * num_joinables

        self._test_join_base(
            uneven_inputs=uneven_inputs,
            num_joinables=num_joinables,
            enable=enable,
            throw_on_early_termination=False,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=expected_total
        )

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_single_joinable_throw(self):
        r"""
        Tests ``throw_on_early_termination=True`` for a single
        :class:`Joinable`.
        """
        num_joinables = 1
        num_allreduces = 1
        throw_on_early_termination = True
        run_post_hooks = False

        self._test_join_base(
            uneven_inputs=True,
            num_joinables=num_joinables,
            enable=True,
            throw_on_early_termination=throw_on_early_termination,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=None
        )

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_multiple_joinables_throw(self):
        r"""
        Tests ``throw_on_early_termination=True`` for multiple
        :class:`Joinable` s together.

        This generalizes ``test_single_joinable_throw`` to multiple
        :class:`Joinable` s.
        """
        num_joinables = 3
        num_allreduces = 1
        throw_on_early_termination = True
        run_post_hooks = False

        self._test_join_base(
            uneven_inputs=True,
            num_joinables=num_joinables,
            enable=True,
            throw_on_early_termination=throw_on_early_termination,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=None
        )

    @require_n_gpus_for_nccl_backend(
        WORLD_SIZE, BACKEND
    )
    def test_join_kwargs(self):
        r"""
        Tests passing keyword arguments to the context manager.
        """
        num_joinables = 1
        num_allreduces = 2
        run_post_hooks = False

        expected_total = self.world_size * self.base_num_inputs
        for num_joined in range(1, self.rank + 1):
            expected_total += (self.world_size - num_joined) * self.offset
        # The expected total is now multiplied by a factor of `NUM_ALLREDUCES`
        expected_total *= num_allreduces

        self._test_join_base(
            uneven_inputs=True,
            num_joinables=num_joinables,
            enable=True,
            throw_on_early_termination=False,
            num_allreduces=num_allreduces,
            run_post_hooks=run_post_hooks,
            expected_total=expected_total
        )

if __name__ == "__main__":
    run_tests()