File: test_checkpoint_wrapper.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (309 lines) | stat: -rw-r--r-- 12,096 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Owner(s): ["oncall: distributed"]

from copy import deepcopy
from functools import partial

import torch
import torch.nn as nn
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    checkpoint_wrapper,
    apply_activation_checkpointing,
    CheckpointWrapper,
    CheckpointImpl
)

from torch.utils.checkpoint import checkpoint

from torch.testing._internal.common_utils import (
    run_tests,
    TestCase,
)

import unittest

class CheckpointWrapperTest(TestCase):
    def setUp(self):
        super().setUp()

    def test_load_activation_checkpointed_module(self):
        lin = nn.Linear(10, 10, bias=False)
        lin = checkpoint_wrapper(
            lin,
            checkpoint_fn=checkpoint,
            # checkpoint kwargs
            use_reentrant=True,
            preserve_rng_state=False,
        )
        state_dict = deepcopy(lin.state_dict())
        # Load into non-checkpoint wrapped linear module
        lin_new = nn.Linear(10, 10, bias=False)
        lin_new.load_state_dict(state_dict)
        for p1, p2 in zip(lin.parameters(), lin_new.parameters()):
            self.assertEqual(p1, p2)
            self.assertTrue(torch.allclose(p1, p2))

        # Load non-checkpoint wrapped module into checkpoint wrapped one
        # Make params different
        for p in lin_new.parameters():
            with torch.no_grad():
                p.add_(0.5)

        state_dict = deepcopy(lin_new.state_dict())
        # Verify checkpoint wrapped linear can load unwrapped linear
        lin.load_state_dict(state_dict)
        for p1, p2 in zip(lin.parameters(), lin_new.parameters()):
            self.assertEqual(p1, p2)

    def test_checkpoint_wrapper_kwarg_support(self):
        class MyModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.lin = nn.Linear(10, 10)

            def forward(self, a, b, c=None, d=None, **kwargs):
                return (
                    self.lin(a),
                    self.lin(b),
                    self.lin(c),
                    self.lin(d)
                )


        for wrapper in [
            partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.REENTRANT),
            partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT),
            partial(checkpoint_wrapper, offload_to_cpu=True),
        ]:
            with self.subTest(wrapper=wrapper):
                model = wrapper(MyModel())
                self.assertTrue(isinstance(model, CheckpointWrapper))
                # Verify kwargs can be passed in
                inp = torch.ones(4, 10, requires_grad=True)
                out = model(inp, inp, c=inp, d=inp, e=inp, f=inp)
                self.assertTrue(isinstance(out, tuple))
                self.assertEqual(4, len(out))
                # Without kwargs should have equivalent gradient requirements.
                out_no_kwarg = model(inp, inp, inp, inp)
                for t1, t2 in zip(out_no_kwarg, out):
                    self.assertEqual(t1, t2)
                    self.assertEqual(t1.requires_grad, t2.requires_grad)

        # Test model that enforces kwarg inputs
        class ModelEnforceKwarg(nn.Module):
            def __init__(self):
                super().__init__()
                self.lin = nn.Linear(10, 10)

            def forward(self, *, a=None, b=None):
                return (self.lin(a), self.lin(b))

        model = checkpoint_wrapper(
            ModelEnforceKwarg(), checkpoint_impl=CheckpointImpl.REENTRANT
        )

        inp = torch.ones(4, 10, requires_grad=True)
        out = model(a=inp, b=inp)
        self.assertEqual(2, len(out))


    @unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA")
    def test_checkpoint_wrapper_parity(self):
        """
        Tests that using checkpoint_wrapper or the functional
        torch.utils.checkpoint (with the same reentrant config)
        results in the same maximum memory usage, i.e. they are
        equivalent memory usage wise.
        """
        class Model(nn.Module):
            def __init__(
                self,
                n: int,
                use_cp: bool,
                use_wrapper: bool = False,
                use_reentrant: bool = True
            ):
                super().__init__()
                self.layers = nn.ModuleList()
                self.n = n
                self.use_cp = use_cp
                self.use_wrapper = use_wrapper
                self.use_reentrant = use_reentrant
                wrp = partial(
                    checkpoint_wrapper,
                    checkpoint_impl=CheckpointImpl.REENTRANT if use_reentrant else CheckpointImpl.NO_REENTRANT
                )
                for i in range(self.n):
                    l = nn.Sequential(nn.Linear(256, 256), nn.Linear(256, 256), nn.Linear(256, 256))
                    use_checkpoint_wrapper = self.use_wrapper
                    if use_checkpoint_wrapper:
                        l = wrp(l)
                    self.layers.append(l)

            def forward(self, x):
                for i in range(self.n):
                    if (
                        self.use_wrapper or
                        not self.use_cp
                    ):
                        x = self.layers[i](x)
                    else:
                        x = checkpoint(self.layers[i], x, use_reentrant=self.use_reentrant)
                return x

        def test(use_checkpointing, use_wrapper, use_reentrant):
            a = Model(8, use_checkpointing, use_wrapper=use_wrapper, use_reentrant=use_reentrant).cuda()
            x = torch.randn(10000, 256, requires_grad=True).cuda()
            torch.cuda.reset_peak_memory_stats()
            loss = a(x).sum()
            loss.backward()
            return torch.cuda.max_memory_allocated()

        functional_no_reentrant = test(use_checkpointing=True, use_wrapper=False, use_reentrant=False)
        wrapper_no_reentrant = test(use_checkpointing=False, use_wrapper=True, use_reentrant=False)
        self.assertEqual(functional_no_reentrant, wrapper_no_reentrant)

        functional_reentrant = test(use_checkpointing=True, use_wrapper=False, use_reentrant=True)
        wrapper_reentrant = test(use_checkpointing=False, use_wrapper=True, use_reentrant=True)
        self.assertEqual(functional_reentrant, wrapper_reentrant)

    def test_forward_missing_attributes(self):
        lin = nn.Linear(1, 1)
        m = nn.Sequential(lin, lin)
        wrapped = CheckpointWrapper(m)
        # Test indexing is forwarded
        self.assertEqual(wrapped[0], lin)
        # Test missing attributes are forwarded.
        m._foo = 'bar'
        self.assertEqual(wrapped._foo, 'bar')

    def test_apply_activation_checkpointing(self):
        """
        Ensures that `apply_activation_checkpointing` can be used
        to swap modules for their checkpoint-wrapped counterparts given
        a model.
        """
        class LinearWithBatchNorm(nn.Module):
            def __init__(self):
                super().__init__()
                self.lin = nn.Linear(10, 10)
                self.bn = nn.BatchNorm1d(10)
                self.nested_linear = nn.Sequential(nn.Linear(10, 10))

            def forward(self, x):
                return self.bn(self.nested_linear(self.lin(x)))

        class MyModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.seq = nn.Sequential(
                    LinearWithBatchNorm(), LinearWithBatchNorm(), LinearWithBatchNorm()
                )

            def forward(self, x):
                return self.seq(x)


        def check_fn(l):
            return isinstance(l, nn.Linear)

        n_linear = None

        for wrapper in [
            partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.REENTRANT),
            partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT),
        ]:
            model = MyModel()
            if n_linear is None:
                n_linear = sum(
                    1 if isinstance(x, nn.Linear) else 0 for x in model.modules()
                )

            with self.subTest(wrapper=wrapper):
                apply_activation_checkpointing(
                    model, checkpoint_wrapper_fn=wrapper, check_fn=check_fn
                )
                n_linear_wrapped = sum(1 if isinstance(x, nn.Linear) else 0 for x in model.modules())
                n_checkpointed = sum(1 if isinstance(x, CheckpointWrapper) else 0 for x in model.modules())
                self.assertEqual(n_checkpointed, n_linear_wrapped)
                self.assertEqual(n_linear, n_linear_wrapped)
                for j in range(3):
                    self.assertTrue(isinstance(model.seq[j].lin, CheckpointWrapper))
                    self.assertTrue(isinstance(model.seq[j].nested_linear[0], CheckpointWrapper))

                inp = torch.randn(4, 10, requires_grad=True)
                for i in range(6):
                    # Kwarg input
                    loss = model(x=inp).sum()
                    self.assertTrue(loss.requires_grad)
                    loss.backward()
                    # ensure checkpointed part of model has gradients
                    for j in range(3):
                        weight_lin = model.seq[j].lin._checkpoint_wrapped_module.weight
                        bias_lin = model.seq[j].lin._checkpoint_wrapped_module.bias
                        weight_nested_lin = model.seq[j].nested_linear[0]._checkpoint_wrapped_module.weight
                        bias_nested_lin = model.seq[j].nested_linear[0]._checkpoint_wrapped_module.bias
                        for param in [weight_lin, bias_lin, weight_nested_lin, bias_nested_lin]:
                            self.assertTrue(param.requires_grad)
                            self.assertFalse(param.grad is None)

    def test_fqn(self):
        lin = nn.Linear(10, 10, bias=False)
        lin = checkpoint_wrapper(lin)
        state_dict = lin.state_dict()
        for fqn, _ in lin.named_parameters():
            self.assertTrue(fqn in state_dict, msg=f"{fqn} not in state_dict.")

    @unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA")
    def test_checkpoint_wrapper_cpu_offload(self):
        model = nn.Sequential(
            nn.Linear(10, 10),
            nn.Linear(10, 10),
            nn.Linear(10, 10),
        ).cuda()

        # Patch saved_tensor_hooks to make the unpack keep the tensor on CPU for
        # testing, otherwise the tensor access during the DFS will cause orig
        # unpack to run, transferring the tensor back to GPU.
        def patched_init(saved_tensor_hook_obj, pack_hook, _):
            saved_tensor_hook_obj.pack_hook = pack_hook

            def testing_cpu_offload_unpack_hook(packed):
                _, tensor = packed
                return tensor

            saved_tensor_hook_obj.unpack_hook = testing_cpu_offload_unpack_hook

        orig_init = torch.autograd.graph.saved_tensors_hooks.__init__
        torch.autograd.graph.saved_tensors_hooks.__init__ = patched_init

        model = checkpoint_wrapper(model, offload_to_cpu=True)

        inp = torch.randn(3, 10, device='cuda')
        loss = model(inp).sum()

        # All autograd saved tensors should be offloaded to CPU.
        offload_verified = False

        def dfs(grad_fn):
            for e in dir(grad_fn):
                if not e.startswith('_saved_'):
                    continue

                saved = getattr(grad_fn, e)
                if isinstance(saved, torch.Tensor):
                    self.assertEqual(torch.device("cpu"), saved.device)
                    nonlocal offload_verified
                    offload_verified = True

            if hasattr(grad_fn, 'next_functions'):
                for next_grad_fn, _ in grad_fn.next_functions:
                    dfs(next_grad_fn)

        dfs(loss.grad_fn)

        self.assertTrue(offload_verified)

        torch.autograd.graph.saved_tensors_hooks.__init__ = orig_init

if __name__ == "__main__":
    run_tests()