1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
# Owner(s): ["oncall: distributed"]
import sys
import unittest
import torch
from torch import distributed as dist
from torch.distributed.fsdp.flat_param import (
FlatParamShardMetadata,
HandleConfig,
HandleShardingStrategy,
)
from torch.distributed.fsdp.flatten_params_wrapper import FlattenParamsWrapper
from torch.testing._internal.common_utils import TestCase, run_tests
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
class TestFlattenParams(TestCase):
"""Base test class and used for CPU case."""
def _get_default_config(self):
return HandleConfig(HandleShardingStrategy.FULL_SHARD, False, None, None)
def _get_empty_module(self, seed=0):
torch.manual_seed(seed) # keep everything deterministic
class Test(torch.nn.Module):
def forward(self, x):
return x + 1
module = Test()
def get_input(device, dtype):
torch.manual_seed(1) # keep everything deterministic
return torch.rand(1).to(device=device, dtype=dtype)
module.get_input = get_input
return module
def _get_transformer(self, seed=0):
torch.manual_seed(seed) # keep everything deterministic
module = torch.nn.Transformer(
d_model=32,
num_encoder_layers=2,
num_decoder_layers=2,
dim_feedforward=128,
dropout=0.1,
)
module.register_buffer("dummy_buffer", torch.tensor(1.0))
def get_input(device, dtype):
torch.manual_seed(1) # keep everything deterministic
src = torch.rand(20, 8, 32).to(device=device, dtype=dtype) # T x B x C
tgt = torch.rand(10, 8, 32).to(device=device, dtype=dtype) # T x B x C
return (src, tgt)
module.get_input = get_input
return module
def _get_shared_params_transformer(self, seed=0):
module = self._get_transformer(seed=seed)
# share the FFNs
for enc_layer, dec_layer in zip(module.encoder.layers, module.decoder.layers):
dec_layer.linear1.weight = enc_layer.linear1.weight
dec_layer.linear2.weight = enc_layer.linear2.weight
return module
def _get_output(self, module):
device = next(module.parameters()).device
dtype = next(module.parameters()).dtype
input = module.get_input(device, dtype)
return module(*input)
def _get_pnorm_after_step(self, module):
optim = torch.optim.SGD(module.parameters(), lr=0.01)
loss = self._get_output(module).sum()
loss.backward()
optim.step()
return torch.norm(torch.stack([p.detach().norm() for p in module.parameters()]))
def _test_num_params(self, module):
ref_num_params = sum(p.numel() for p in module.parameters())
params_to_flatten = list(module.parameters())
flat_module = FlattenParamsWrapper(
module,
params_to_flatten,
torch.device("cuda"),
self._get_default_config(),
)
flat_num_params = sum(p.numel() for p in flat_module.parameters())
self.assertEqual(ref_num_params, flat_num_params)
self.assertEqual(flat_num_params, flat_module.flat_param.numel())
def _test_output(self, module):
ref_output = self._get_output(module)
params_to_flatten = list(module.parameters())
flat_module = FlattenParamsWrapper(
module,
params_to_flatten,
torch.device("cuda"),
self._get_default_config(),
)
flat_output = self._get_output(flat_module)
self.assertEqual(ref_output, flat_output)
def test_partial_flattening(self):
module = self._get_transformer()
num_params = sum(p.numel() for p in module.parameters())
params_to_flatten = list(module.encoder.layers[1].parameters()) + list(
module.decoder.layers[0].parameters()
)
num_params_to_flatten = sum(p.numel() for p in params_to_flatten)
module = FlattenParamsWrapper(
module,
params_to_flatten,
torch.device("cuda"),
self._get_default_config(),
)
self.assertEqual(module.flat_param.numel(), num_params_to_flatten)
self.assertEqual(sum(p.numel() for p in module.parameters()), num_params)
# flattened parameters are removed
self.assertEqual(len(list(module.encoder.layers[1].parameters())), 0)
self.assertEqual(len(list(module.decoder.layers[0].parameters())), 0)
# non-flattened parameters remain
self.assertGreater(len(list(module.encoder.layers[0].parameters())), 0)
self.assertGreater(len(list(module.decoder.layers[1].parameters())), 0)
# test that changing the module dtype works properly
orig_dtype = params_to_flatten[0].dtype
new_dtype = torch.float32 if orig_dtype == torch.float16 else torch.float16
self.assertEqual(module.flat_param.dtype, orig_dtype)
self.assertTrue(
all(p.dtype == orig_dtype for p in module.encoder.layers[0].parameters())
)
module = module.to(dtype=new_dtype)
self.assertEqual(module.flat_param.dtype, new_dtype)
self.assertTrue(
all(p.dtype == new_dtype for p in module.encoder.layers[0].parameters())
)
def test_flatten_nothing(self):
module = self._get_transformer()
module = FlattenParamsWrapper(
module,
[],
torch.device("cuda"),
self._get_default_config(),
)
self.assertIsNone(module.flat_param)
def test_empty_module(self):
module = self._get_empty_module()
in_data = torch.rand(1)
ref_out = module(in_data)
module = FlattenParamsWrapper(
module,
[],
torch.device("cuda"),
self._get_default_config(),
)
self.assertEqual(len(list(module.parameters())), 0)
self.assertIsNone(module.flat_param)
fpw_out = module(in_data)
self.assertEqual(ref_out, fpw_out)
def test_num_params(self):
module = self._get_transformer()
self._test_num_params(module)
def test_shared_params_num_params(self):
module = self._get_shared_params_transformer()
self._test_num_params(module)
def test_output(self):
module = self._get_transformer()
self._test_output(module)
def test_shared_params_output(self):
module = self._get_shared_params_transformer()
self._test_output(module)
def test_shared_params_pnorm_after_step(self):
# incorrect parameter sharing is likely to cause problems after an
# optimization step
module = self._get_shared_params_transformer()
ref_pnorm_after_step = self._get_pnorm_after_step(module)
module = self._get_shared_params_transformer() # recreate
params_to_flatten = list(module.parameters())
flat_module = FlattenParamsWrapper(
module,
params_to_flatten,
torch.device("cuda"),
self._get_default_config(),
)
flat_pnorm_after_step = self._get_pnorm_after_step(flat_module)
self.assertEqual(ref_pnorm_after_step, flat_pnorm_after_step)
def test_sharded_flat_param(self):
module = torch.nn.Sequential(
torch.nn.Linear(10, 10, bias=False),
torch.nn.ReLU(),
torch.nn.Linear(10, 10, bias=False),
torch.nn.ReLU(),
torch.nn.Linear(10, 10, bias=False),
torch.nn.ReLU(),
)
params_to_flatten = list(module.parameters())
flat_module = FlattenParamsWrapper(
module,
params_to_flatten,
torch.device("cuda"),
self._get_default_config(),
)
flat_param_handle = flat_module.handle
def _test(kwargs, expected):
"""
Tests the subroutine ``_get_shard_metadata()`` that computes shard
metadata based on start and end indices in the unsharded flattened
parameter.
We manually set the relevant attributes on the flattened parameter
to be able to check the effect of ``_get_shard_metadata()`` via
``shard_metadata()`` since normally the attributes are set in
``init_shard_info()`` with the start and end indices fixed based on
rank and world size.
"""
flat_param = flat_module.flat_param
flat_param._shard_param_offsets, flat_param._shard_indices = \
flat_param_handle._get_shard_metadata(kwargs["start"], kwargs["end"])
self.assertEqual(
flat_param_handle.shard_metadata(),
expected,
msg=f"{flat_param_handle.shard_metadata()}, {expected}",
)
_test(
kwargs={"start": 0, "end": 0},
expected=FlatParamShardMetadata(
param_names=["0.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(0, 0)],
),
)
_test(
kwargs={"start": 0, "end": 50},
expected=FlatParamShardMetadata(
param_names=["0.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(0, 50)],
),
)
_test(
kwargs={"start": 0, "end": 99},
expected=FlatParamShardMetadata(
param_names=["0.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(0, 99)],
),
)
_test(
kwargs={"start": 50, "end": 149},
expected=FlatParamShardMetadata(
param_names=["0.weight", "2.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(50, 99), (0, 49)],
),
)
_test(
kwargs={"start": 50, "end": 199},
expected=FlatParamShardMetadata(
param_names=["0.weight", "2.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(50, 99), (0, 99)],
),
)
_test(
kwargs={"start": 99, "end": 199},
expected=FlatParamShardMetadata(
param_names=["0.weight", "2.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(99, 99), (0, 99)],
),
)
_test(
kwargs={"start": 100, "end": 199},
expected=FlatParamShardMetadata(
param_names=["2.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(0, 99)],
),
)
_test(
kwargs={"start": 100, "end": 299},
expected=FlatParamShardMetadata(
param_names=["2.weight", "4.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(0, 99), (0, 99)],
),
)
_test(
kwargs={"start": 100, "end": 1000},
expected=FlatParamShardMetadata(
param_names=["2.weight", "4.weight"],
param_shapes=[(10, 10), (10, 10)],
param_numels=[100, 100],
param_offsets=[(0, 99), (0, 99)],
),
)
_test(
kwargs={"start": 299, "end": 299},
expected=FlatParamShardMetadata(
param_names=["4.weight"],
param_shapes=[(10, 10)],
param_numels=[100],
param_offsets=[(99, 99)],
),
)
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDA(TestFlattenParams):
def _get_transformer(self, seed=0):
module = super()._get_transformer(seed=seed)
return module.cuda()
@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDAHalf(TestFlattenParams):
def _get_transformer(self, seed=0):
module = super()._get_transformer(seed=seed)
return module.cuda().half()
if __name__ == "__main__":
run_tests()
|