File: test_flatten_params_wrapper.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (356 lines) | stat: -rw-r--r-- 12,644 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Owner(s): ["oncall: distributed"]

import sys
import unittest

import torch
from torch import distributed as dist
from torch.distributed.fsdp.flat_param import (
    FlatParamShardMetadata,
    HandleConfig,
    HandleShardingStrategy,
)
from torch.distributed.fsdp.flatten_params_wrapper import FlattenParamsWrapper
from torch.testing._internal.common_utils import TestCase, run_tests

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)


class TestFlattenParams(TestCase):
    """Base test class and used for CPU case."""

    def _get_default_config(self):
        return HandleConfig(HandleShardingStrategy.FULL_SHARD, False, None, None)

    def _get_empty_module(self, seed=0):
        torch.manual_seed(seed)  # keep everything deterministic

        class Test(torch.nn.Module):
            def forward(self, x):
                return x + 1

        module = Test()

        def get_input(device, dtype):
            torch.manual_seed(1)  # keep everything deterministic
            return torch.rand(1).to(device=device, dtype=dtype)

        module.get_input = get_input
        return module

    def _get_transformer(self, seed=0):
        torch.manual_seed(seed)  # keep everything deterministic
        module = torch.nn.Transformer(
            d_model=32,
            num_encoder_layers=2,
            num_decoder_layers=2,
            dim_feedforward=128,
            dropout=0.1,
        )
        module.register_buffer("dummy_buffer", torch.tensor(1.0))

        def get_input(device, dtype):
            torch.manual_seed(1)  # keep everything deterministic
            src = torch.rand(20, 8, 32).to(device=device, dtype=dtype)  # T x B x C
            tgt = torch.rand(10, 8, 32).to(device=device, dtype=dtype)  # T x B x C
            return (src, tgt)

        module.get_input = get_input
        return module

    def _get_shared_params_transformer(self, seed=0):
        module = self._get_transformer(seed=seed)
        # share the FFNs
        for enc_layer, dec_layer in zip(module.encoder.layers, module.decoder.layers):
            dec_layer.linear1.weight = enc_layer.linear1.weight
            dec_layer.linear2.weight = enc_layer.linear2.weight
        return module

    def _get_output(self, module):
        device = next(module.parameters()).device
        dtype = next(module.parameters()).dtype
        input = module.get_input(device, dtype)
        return module(*input)

    def _get_pnorm_after_step(self, module):
        optim = torch.optim.SGD(module.parameters(), lr=0.01)
        loss = self._get_output(module).sum()
        loss.backward()
        optim.step()
        return torch.norm(torch.stack([p.detach().norm() for p in module.parameters()]))

    def _test_num_params(self, module):
        ref_num_params = sum(p.numel() for p in module.parameters())

        params_to_flatten = list(module.parameters())
        flat_module = FlattenParamsWrapper(
            module,
            params_to_flatten,
            torch.device("cuda"),
            self._get_default_config(),
        )
        flat_num_params = sum(p.numel() for p in flat_module.parameters())

        self.assertEqual(ref_num_params, flat_num_params)
        self.assertEqual(flat_num_params, flat_module.flat_param.numel())

    def _test_output(self, module):
        ref_output = self._get_output(module)

        params_to_flatten = list(module.parameters())
        flat_module = FlattenParamsWrapper(
            module,
            params_to_flatten,
            torch.device("cuda"),
            self._get_default_config(),
        )
        flat_output = self._get_output(flat_module)
        self.assertEqual(ref_output, flat_output)

    def test_partial_flattening(self):
        module = self._get_transformer()
        num_params = sum(p.numel() for p in module.parameters())

        params_to_flatten = list(module.encoder.layers[1].parameters()) + list(
            module.decoder.layers[0].parameters()
        )
        num_params_to_flatten = sum(p.numel() for p in params_to_flatten)

        module = FlattenParamsWrapper(
            module,
            params_to_flatten,
            torch.device("cuda"),
            self._get_default_config(),
        )
        self.assertEqual(module.flat_param.numel(), num_params_to_flatten)
        self.assertEqual(sum(p.numel() for p in module.parameters()), num_params)

        # flattened parameters are removed
        self.assertEqual(len(list(module.encoder.layers[1].parameters())), 0)
        self.assertEqual(len(list(module.decoder.layers[0].parameters())), 0)

        # non-flattened parameters remain
        self.assertGreater(len(list(module.encoder.layers[0].parameters())), 0)
        self.assertGreater(len(list(module.decoder.layers[1].parameters())), 0)

        # test that changing the module dtype works properly
        orig_dtype = params_to_flatten[0].dtype
        new_dtype = torch.float32 if orig_dtype == torch.float16 else torch.float16
        self.assertEqual(module.flat_param.dtype, orig_dtype)
        self.assertTrue(
            all(p.dtype == orig_dtype for p in module.encoder.layers[0].parameters())
        )
        module = module.to(dtype=new_dtype)
        self.assertEqual(module.flat_param.dtype, new_dtype)
        self.assertTrue(
            all(p.dtype == new_dtype for p in module.encoder.layers[0].parameters())
        )

    def test_flatten_nothing(self):
        module = self._get_transformer()
        module = FlattenParamsWrapper(
            module,
            [],
            torch.device("cuda"),
            self._get_default_config(),
        )
        self.assertIsNone(module.flat_param)

    def test_empty_module(self):
        module = self._get_empty_module()
        in_data = torch.rand(1)
        ref_out = module(in_data)
        module = FlattenParamsWrapper(
            module,
            [],
            torch.device("cuda"),
            self._get_default_config(),
        )
        self.assertEqual(len(list(module.parameters())), 0)
        self.assertIsNone(module.flat_param)
        fpw_out = module(in_data)
        self.assertEqual(ref_out, fpw_out)

    def test_num_params(self):
        module = self._get_transformer()
        self._test_num_params(module)

    def test_shared_params_num_params(self):
        module = self._get_shared_params_transformer()
        self._test_num_params(module)

    def test_output(self):
        module = self._get_transformer()
        self._test_output(module)

    def test_shared_params_output(self):
        module = self._get_shared_params_transformer()
        self._test_output(module)

    def test_shared_params_pnorm_after_step(self):
        # incorrect parameter sharing is likely to cause problems after an
        # optimization step
        module = self._get_shared_params_transformer()
        ref_pnorm_after_step = self._get_pnorm_after_step(module)

        module = self._get_shared_params_transformer()  # recreate
        params_to_flatten = list(module.parameters())
        flat_module = FlattenParamsWrapper(
            module,
            params_to_flatten,
            torch.device("cuda"),
            self._get_default_config(),
        )
        flat_pnorm_after_step = self._get_pnorm_after_step(flat_module)

        self.assertEqual(ref_pnorm_after_step, flat_pnorm_after_step)

    def test_sharded_flat_param(self):
        module = torch.nn.Sequential(
            torch.nn.Linear(10, 10, bias=False),
            torch.nn.ReLU(),
            torch.nn.Linear(10, 10, bias=False),
            torch.nn.ReLU(),
            torch.nn.Linear(10, 10, bias=False),
            torch.nn.ReLU(),
        )
        params_to_flatten = list(module.parameters())
        flat_module = FlattenParamsWrapper(
            module,
            params_to_flatten,
            torch.device("cuda"),
            self._get_default_config(),
        )
        flat_param_handle = flat_module.handle

        def _test(kwargs, expected):
            """
            Tests the subroutine ``_get_shard_metadata()`` that computes shard
            metadata based on start and end indices in the unsharded flattened
            parameter.

            We manually set the relevant attributes on the flattened parameter
            to be able to check the effect of ``_get_shard_metadata()`` via
            ``shard_metadata()`` since normally the attributes are set in
            ``init_shard_info()`` with the start and end indices fixed based on
            rank and world size.
            """
            flat_param = flat_module.flat_param
            flat_param._shard_param_offsets, flat_param._shard_indices = \
                flat_param_handle._get_shard_metadata(kwargs["start"], kwargs["end"])
            self.assertEqual(
                flat_param_handle.shard_metadata(),
                expected,
                msg=f"{flat_param_handle.shard_metadata()}, {expected}",
            )

        _test(
            kwargs={"start": 0, "end": 0},
            expected=FlatParamShardMetadata(
                param_names=["0.weight"],
                param_shapes=[(10, 10)],
                param_numels=[100],
                param_offsets=[(0, 0)],
            ),
        )
        _test(
            kwargs={"start": 0, "end": 50},
            expected=FlatParamShardMetadata(
                param_names=["0.weight"],
                param_shapes=[(10, 10)],
                param_numels=[100],
                param_offsets=[(0, 50)],
            ),
        )
        _test(
            kwargs={"start": 0, "end": 99},
            expected=FlatParamShardMetadata(
                param_names=["0.weight"],
                param_shapes=[(10, 10)],
                param_numels=[100],
                param_offsets=[(0, 99)],
            ),
        )
        _test(
            kwargs={"start": 50, "end": 149},
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "2.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_numels=[100, 100],
                param_offsets=[(50, 99), (0, 49)],
            ),
        )
        _test(
            kwargs={"start": 50, "end": 199},
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "2.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_numels=[100, 100],
                param_offsets=[(50, 99), (0, 99)],
            ),
        )
        _test(
            kwargs={"start": 99, "end": 199},
            expected=FlatParamShardMetadata(
                param_names=["0.weight", "2.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_numels=[100, 100],
                param_offsets=[(99, 99), (0, 99)],
            ),
        )
        _test(
            kwargs={"start": 100, "end": 199},
            expected=FlatParamShardMetadata(
                param_names=["2.weight"],
                param_shapes=[(10, 10)],
                param_numels=[100],
                param_offsets=[(0, 99)],
            ),
        )
        _test(
            kwargs={"start": 100, "end": 299},
            expected=FlatParamShardMetadata(
                param_names=["2.weight", "4.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_numels=[100, 100],
                param_offsets=[(0, 99), (0, 99)],
            ),
        )
        _test(
            kwargs={"start": 100, "end": 1000},
            expected=FlatParamShardMetadata(
                param_names=["2.weight", "4.weight"],
                param_shapes=[(10, 10), (10, 10)],
                param_numels=[100, 100],
                param_offsets=[(0, 99), (0, 99)],
            ),
        )
        _test(
            kwargs={"start": 299, "end": 299},
            expected=FlatParamShardMetadata(
                param_names=["4.weight"],
                param_shapes=[(10, 10)],
                param_numels=[100],
                param_offsets=[(99, 99)],
            ),
        )


@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDA(TestFlattenParams):
    def _get_transformer(self, seed=0):
        module = super()._get_transformer(seed=seed)
        return module.cuda()


@unittest.skipIf(not torch.cuda.is_available(), "test requires a GPU")
class TestFlattenParamsCUDAHalf(TestFlattenParams):
    def _get_transformer(self, seed=0):
        module = super()._get_transformer(seed=seed)
        return module.cuda().half()


if __name__ == "__main__":
    run_tests()