File: test_fsdp_checkpoint.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (226 lines) | stat: -rw-r--r-- 8,234 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Owner(s): ["oncall: distributed"]

import contextlib
from copy import deepcopy
from functools import partial

import torch
import torch.nn as nn
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    FullyShardedDataParallel as FSDP,
    CPUOffload,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    checkpoint_wrapper,
)
from torch.testing._internal.common_distributed import (
    skip_if_lt_x_gpu,
)
from torch.testing._internal.common_fsdp import (
    FSDPTest,
    _maybe_wrap_fsdp,
)
from torch.testing._internal.common_utils import (
    run_tests,
    parametrize,
    instantiate_parametrized_tests,
)
from torch.utils.checkpoint import checkpoint

_save_on_cpu_called = False
def get_patched_save_on_cpu():
    orig_save_on_cpu = torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu

    def patched_save_on_cpu(*args, **kwargs):
        global _save_on_cpu_called
        _save_on_cpu_called = True
        return orig_save_on_cpu(*args, **kwargs)

    return patched_save_on_cpu

@contextlib.contextmanager
def patch_save_on_cpu(new_save_on_cpu):
    orig_save_on_cpu = torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu
    torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu = new_save_on_cpu
    try:
        yield
    finally:
        torch.distributed.algorithms._checkpoint.checkpoint_wrapper.save_on_cpu = orig_save_on_cpu

class TestFSDPCheckpoint(FSDPTest):
    class SequentialModule(nn.Module):
        def __init__(
            self,
            checkpoint_layer=False,
            offload_activations=False,
            wrap_fsdp=False,
            *fsdp_args,
            **fsdp_kwargs,
        ):
            torch.manual_seed(0)
            torch.cuda.manual_seed(0)
            super().__init__()
            l1 = nn.Linear(3, 3).cuda()
            l2 = nn.Linear(3, 3).cuda()
            l3 = nn.Linear(3, 3).cuda()

            if checkpoint_layer:
                ckpt_wrapper = partial(
                    checkpoint_wrapper, offload_to_cpu=offload_activations
                )

                l1 = ckpt_wrapper(l1)
                l2 = ckpt_wrapper(l2)
                l3 = ckpt_wrapper(l3)

            fsdp_wrapper = partial(
                _maybe_wrap_fsdp, wrap_fsdp=wrap_fsdp, *fsdp_args, **fsdp_kwargs
            )
            self.ffn = nn.Sequential(
                fsdp_wrapper(l1),
                fsdp_wrapper(l2),
                fsdp_wrapper(l3),
            )

        def forward(self, x):
            return self.ffn(x)

    def _verify_parity(self, losses, outputs, models):
        assert losses
        assert outputs
        assert models

        for (l, o) in zip(losses[1:], outputs[1:]):
            self.assertEqual(losses[0], l)
            self.assertEqual(outputs[0], o)

        # Verify grads
        ref_model = models[0]
        ref_grads = [p.grad for p in ref_model.parameters()]
        for m in models[1:]:
            grads = [p.grad for p in m.parameters()]
            for ref_g, g in zip(ref_grads, grads):
                self.assertEqual(ref_g, g)

    @skip_if_lt_x_gpu(2)
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
    )
    @parametrize("offload_activations", [True, False])
    def test_checkpoint_fsdp_wrapping(self, cpu_offload, offload_activations):
        # Test checkpoint(FSDP(layer1), FSDP(layer2), ....)
        ckpt_sequential_wrapped_fsdp = checkpoint_wrapper(
            TestFSDPCheckpoint.SequentialModule(
                wrap_fsdp=True, cpu_offload=cpu_offload
            ),
            offload_to_cpu=offload_activations,
        )
        # Test FSDP(checkpoint(layer1)), FSDP(checkpoint(layer2)), ....
        inner_ckpt = TestFSDPCheckpoint.SequentialModule(
            checkpoint_layer=True,
            offload_activations=offload_activations,
            wrap_fsdp=True,
            cpu_offload=cpu_offload,
        )

        baseline = TestFSDPCheckpoint.SequentialModule(
            wrap_fsdp=True, cpu_offload=cpu_offload
        )

        # note that reentrant-based checkpointing requires inputs to have grad
        # flag set.
        inp = torch.randn(10, 3, device=torch.cuda.current_device(), requires_grad=True)

        global _save_on_cpu_called
        models = [ckpt_sequential_wrapped_fsdp, inner_ckpt, baseline]
        with patch_save_on_cpu(get_patched_save_on_cpu()):
            for i in range(2):
                losses = []
                outputs = []
                for m in models:
                    check_offload = m != baseline and i == 0 and offload_activations
                    if check_offload:
                        self.assertFalse(_save_on_cpu_called)
                    out = m(inp)
                    if check_offload:
                        self.assertTrue(_save_on_cpu_called)
                        _save_on_cpu_called = False
                    loss = out.sum()
                    loss.backward()
                    losses.append(loss)
                    outputs.append(out)

                self._verify_parity(losses, outputs, models)

    @skip_if_lt_x_gpu(2)
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
    )
    @parametrize("offload_activations", [True, False])
    def test_basic_checkpoint_end_to_end(self, cpu_offload, offload_activations):
        global _save_on_cpu_called
        with patch_save_on_cpu(get_patched_save_on_cpu()):
            seq = TestFSDPCheckpoint.SequentialModule().to(torch.cuda.current_device())
            # Runs FSDP with no checkpointing
            fsdp_only_seq = FSDP(deepcopy(seq), cpu_offload=cpu_offload)
            # Runs checkpoint-wrapped FSDP
            checkpointed_fsdp = checkpoint_wrapper(
                FSDP(deepcopy(seq), cpu_offload=cpu_offload),
                offload_to_cpu=offload_activations,
            )
            # Runs FSDP-wrapped checkpointed module
            fsdp_wrapped_checkpoint = FSDP(
                checkpoint_wrapper(deepcopy(seq), offload_to_cpu=offload_activations),
                cpu_offload=cpu_offload,
            )
            # Runs FSDP with manual calls to checkpoint.
            fsdp_call_checkpoint = FSDP(deepcopy(seq), cpu_offload=cpu_offload)
            # note that reentrant-based checkpointing requires inputs to have grad
            # flag set.

            inp = torch.randn(10, 3, device=torch.cuda.current_device(), requires_grad=True)

            models = [
                fsdp_only_seq,
                checkpointed_fsdp,
                fsdp_wrapped_checkpoint,
                fsdp_call_checkpoint,
            ]
            # Ensure _save_on_cpu is not yet called
            self.assertFalse(_save_on_cpu_called)
            for i in range(6):
                losses = []
                outputs = []
                for m in models:
                    check_offload = m != fsdp_only_seq and i == 0 and offload_activations
                    if m == fsdp_call_checkpoint:
                        # _save_on_cpu should not be called yet
                        self.assertFalse(_save_on_cpu_called)
                        offload_ctx = (
                            get_patched_save_on_cpu()(pin_memory=True)
                            if offload_activations
                            else contextlib.suppress()
                        )
                        with offload_ctx:
                            out = checkpoint(m, inp)
                    else:
                        # _save_on_cpu should not be called yet
                        self.assertFalse(_save_on_cpu_called)
                        out = m(inp)

                    if check_offload:
                        self.assertTrue(_save_on_cpu_called)
                    loss = out.sum()
                    loss.backward()
                    losses.append(loss)
                    outputs.append(out)
                    _save_on_cpu_called = False

                self._verify_parity(losses, outputs, models)

instantiate_parametrized_tests(TestFSDPCheckpoint)

if __name__ == "__main__":
    run_tests()