1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
# Owner(s): ["oncall: distributed"]
import sys
from contextlib import suppress
from enum import Enum, auto
from typing import Optional
from unittest.mock import patch
import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize,
run_tests,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class PassType(Enum):
__order__ = "FWD BWD"
FWD = auto()
BWD = auto()
class TestCommunication(FSDPTest):
"""Tests ``FullyShardedDataParallel``'s collective communication usage."""
def _init_model(
self,
nested_model: bool,
sharding_strategy: ShardingStrategy,
device: torch.device,
):
fsdp_kwargs = {"sharding_strategy": sharding_strategy}
if nested_model:
model = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_AFTER,
fsdp_kwargs,
)
fsdp_model: FSDP = FSDP(
model,
self.process_group,
**fsdp_kwargs,
).to(device)
else:
fsdp_model: FSDP = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
fsdp_kwargs,
)
return fsdp_model
def _run_iter(self, fsdp_model, batch, use_no_sync: bool):
"""Runs an iteration inside or outside the ``no_sync()`` context."""
context = fsdp_model.no_sync() if use_no_sync else suppress()
with context:
output = fsdp_model(*batch)
loss = fsdp_model.module.get_loss(batch, output)
loss.backward()
def _get_ref_num_reduce_scatters(
self,
num_fsdp: int,
in_no_sync: bool,
) -> int:
"""Returns the reference number of reduce-scatters for an iteration
in the ``no_sync()`` context."""
return num_fsdp if not in_no_sync else 0
def _get_ref_num_all_gathers(
self,
num_fsdp: int,
sharding_strategy: Optional[ShardingStrategy],
is_first_iter: bool,
is_last_iter_no_sync: bool,
) -> int:
"""Returns the reference number of all-gathers in an iteration, summing
over the forward and backward passes."""
return sum(
self._get_ref_num_all_gathers_in_pass(
num_fsdp,
sharding_strategy,
pass_type,
is_first_iter,
is_last_iter_no_sync,
) for pass_type in PassType
)
def _get_ref_num_all_gathers_in_pass(
self,
num_fsdp: int,
sharding_strategy: Optional[ShardingStrategy],
pass_type: PassType,
is_first_iter: bool,
is_last_iter_no_sync: bool,
):
"""Returns the reference number of all-gathers for a given setting."""
if sharding_strategy is None:
sharding_strategy = ShardingStrategy.FULL_SHARD # default
# Forward pass:
if pass_type == PassType.FWD and \
sharding_strategy == ShardingStrategy.SHARD_GRAD_OP and \
is_last_iter_no_sync:
# Modules do not free the full parameters in the last
# iteration's backward pass if it was in `no_sync()`
num_all_gathers = 0
elif pass_type == PassType.FWD:
# Otherwise, all modules all-gather the full parameters in the
# forward pass
num_all_gathers = num_fsdp
# Backward pass:
elif pass_type == PassType.BWD and \
sharding_strategy == ShardingStrategy.FULL_SHARD:
# Root does not free the full parameters at the end of the
# forward pass
num_all_gathers = num_fsdp - 1
elif pass_type == PassType.BWD and \
sharding_strategy == ShardingStrategy.SHARD_GRAD_OP:
# Modules do not free the full parameters at the end of the
# forward pass
num_all_gathers = 0
else:
assert 0, f"Unsupported: add a branch for pass_type={pass_type} " \
f"is_first_iter={is_first_iter} " \
f"is_last_iter_no_sync={is_last_iter_no_sync} " \
f"sharding_strategy={sharding_strategy}"
if is_first_iter and pass_type == PassType.FWD:
# With execution order validation, on the first iteration, we have
# an additional two all-gathers before every actual all-gather in
# the forward pass
num_all_gathers *= 3
return num_all_gathers
def _print_ref_num_all_gathers_in_pass(
self,
num_fsdp: int,
sharding_strategy: ShardingStrategy,
pass_type: PassType,
is_first_iter: bool,
is_last_iter_no_sync: bool,
):
"""Helper method for printing the number of all-gathers for a specific
setting. This may be helpful since the branching is complex."""
if self.rank != 0:
return # only print on one rank
num_all_gathers = self._get_ref_num_all_gathers_in_pass(
num_fsdp, sharding_strategy, pass_type, is_first_iter,
is_last_iter_no_sync,
)
print(
f"Pass: {pass_type}\n"
f"Is First Iteration: {is_first_iter}\n"
f"Sharding Strategy: {sharding_strategy}\n"
f"Last iteration in `no_sync()`: {is_last_iter_no_sync}\n"
f"Number of all-gathers: {num_all_gathers}"
)
@skip_if_lt_x_gpu(2)
@parametrize("nested_model", [False, True])
@parametrize("use_no_sync", [False, True])
@parametrize("sharding_strategy", [ShardingStrategy.SHARD_GRAD_OP, None])
def test_communication(
self,
nested_model: bool,
use_no_sync: bool,
sharding_strategy: Optional[ShardingStrategy],
):
"""
Tests FSDP's communication cost in terms of calls to collective
communication primitives (i.e. all-gather and reduce-scatter).
Arguments:
nested_model (bool): If ``True``, uses ``NestedWrappedModule``,
which has nested FSDP instances; if ``False``, uses the default
model, which does not have nested FSDP instances.
use_no_sync (bool): If ``True``, runs some iterations inside the
``no_sync()`` context manager to accumulate gradients, followed
by some iterations outside the context manager; if ``False``,
only runs some iterations outside the context manager.
sharding_strategy (Optional[ShardingStrategy]): Configures the
FSDP algorithm.
"""
# Initialize the model and inputs
device = torch.device("cuda")
fsdp_model = self._init_model(nested_model, sharding_strategy, device)
batch = fsdp_model.module.get_input(device)
# Count the number of FSDP instances that manage parameters since the
# number of collectives are a function of this number
num_fsdp = sum(
(isinstance(m, FSDP) and len(m.params) > 0)
for m in fsdp_model.modules()
)
# If `use_no_sync=True`, we run `num_iters` iterations inside
# `no_sync()` followed by `num_iters` iterations outside `no_sync()`,
# and if `use_no_sync=False`, we only run `num_iters` iterations
# outside `no_sync()`
num_iters = 3
with patch("torch.distributed._all_gather_base") as mock_all_gather, \
patch("torch.distributed._reduce_scatter_base") as mock_reduce_scatter:
def reset_mocks():
mock_all_gather.reset_mock()
mock_reduce_scatter.reset_mock()
# Check the communication cost when using `no_sync()`
if use_no_sync:
for i in range(num_iters):
reset_mocks()
self._run_iter(fsdp_model, batch, use_no_sync=True)
num_all_gathers = mock_all_gather.call_count
num_reduce_scatters = mock_reduce_scatter.call_count
ref_num_all_gathers = self._get_ref_num_all_gathers(
num_fsdp, sharding_strategy, is_first_iter=i == 0,
is_last_iter_no_sync=i > 0,
)
ref_num_reduce_scatters = self._get_ref_num_reduce_scatters(
num_fsdp, in_no_sync=True,
)
self.assertEqual(num_all_gathers, ref_num_all_gathers)
self.assertEqual(num_reduce_scatters, ref_num_reduce_scatters)
# Check the normal communication cost (when not using `no_sync()`)
for i in range(num_iters):
reset_mocks()
self._run_iter(fsdp_model, batch, use_no_sync=False)
num_all_gathers = mock_all_gather.call_count
num_reduce_scatters = mock_reduce_scatter.call_count
ref_num_all_gathers = self._get_ref_num_all_gathers(
num_fsdp, sharding_strategy,
is_first_iter=not use_no_sync and i == 0,
is_last_iter_no_sync=use_no_sync and i == 0,
)
ref_num_reduce_scatters = self._get_ref_num_reduce_scatters(
num_fsdp, in_no_sync=False,
)
self.assertEqual(num_all_gathers, ref_num_all_gathers)
self.assertEqual(num_reduce_scatters, ref_num_reduce_scatters)
instantiate_parametrized_tests(TestCommunication)
if __name__ == "__main__":
run_tests()
|