File: test_fsdp_comm_hooks.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (461 lines) | stat: -rw-r--r-- 16,767 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Owner(s): ["oncall: distributed"]

import sys
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.algorithms._comm_hooks import default_hooks
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.testing._internal.common_distributed import (
    requires_nccl,
    requires_nccl_version,
    sandcastle_skip_if,
    skip_if_lt_x_gpu,
    skip_if_rocm,
)
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
)


if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

# bfloat16 is only supported by CUDA 11+
BFLOAT16_AVAILABLE = (
    torch.cuda.is_available()
    and torch.version.cuda is not None
    and int(torch.version.cuda.split('.')[0]) >= 11)

class Net(nn.Module):

    def __init__(self, has_wrapping, sharding_strategy, mixed_precision=None):
        # to ensure determinism
        torch.manual_seed(0)
        torch.cuda.manual_seed(0)
        super().__init__()

        if has_wrapping:
            self.net = FSDP(nn.Sequential(
                nn.Linear(8, 16),
                nn.ReLU(),
                FSDP(
                    nn.Linear(16, 8),
                    device_id=torch.cuda.current_device(),
                    sharding_strategy=sharding_strategy,
                    mixed_precision=mixed_precision,
                )
            ),
                device_id=torch.cuda.current_device(),
                sharding_strategy=sharding_strategy,
                mixed_precision=mixed_precision,
            )
        else:
            self.net = nn.Sequential(
                nn.Linear(8, 16),
                nn.ReLU(),
                nn.Linear(16, 8)
            )

        self.out = nn.Linear(8, 4)

    def forward(self, x):
        return self.out(F.relu(self.net(x)))

class DummyState(object):

    __slots__ = [
        "process_group",
        "noise"
    ]

    def __init__(self, process_group: dist.ProcessGroup, noise: int):
        self.process_group = process_group
        self.noise = noise

class DummyHook(object):

    def dummy_hook_for_no_shard_fsdp(self, state: DummyState, grad: torch.Tensor):
        """
        This communication hook is for illustration and testing purpose only.
        This communication hook is used during FSDP ``NO_SHARD`` training. It adds some noise to
        the provided ``grad`` parameter and uses ``all_reduce`` to communicate full, flattened,
        unsharded gradient.
        """
        grad.add_(state.noise)
        dist.all_reduce(grad, group=state.process_group)

    def custom_reduce_scatter(self, output, input, group=None):
        """
        This function is for illustrative purpose only.
        It is meant to implement a custom reduce-scatter
        of a flattened tensor to all processes in a group.
        Currently a no-op.
        """
        pass

    def dummy_hook_for_sharded_fsdp(self, state: DummyState, grad: torch.Tensor, output: torch.Tensor):
        """
        This communication hook is for illustration and testing purposes only.
        This communication hook is used during FSDP ``FULL_SHARD`` or ``SHARD_GRAD_OP`` training.
        It adds some noise to the provided ``grad`` parameter, uses
        ``reduce_scatter`` for gradient communication and stores a sharded gradient in ``output``.
        """
        grad.add_(state.noise)
        self.custom_reduce_scatter(
            output, grad, group=state.process_group
        )

class TestCommunicationHooks(FSDPTest):

    @skip_if_lt_x_gpu(2)
    @parametrize(
        "sharding_strategy",
        [
            ShardingStrategy.NO_SHARD,
            ShardingStrategy.FULL_SHARD,
            ShardingStrategy.SHARD_GRAD_OP
        ])
    def test_default_communication_hook_behavior(
        self,
        sharding_strategy: Optional[ShardingStrategy]
    ):
        """
        Tests FSDP's default communication hook's behavior and correctness.
        This test creates a simple linear net with weight shape  ``1 X N``,
        where ``N`` is the number of workers.
        For sharded cases, each worker gets 1 element of the weight parameter. This test
        checks that after backward, each worker has a proper value in its chunk of
        the gradient, or the whole gradient on every worker is equal to an expected value.

        Arguments:
            sharding_strategy (Optional[ShardingStrategy]): Configures the FSDP algorithm.
        """
        out_dim = self.world_size
        net = torch.nn.Linear(1, out_dim, bias=False)
        inpt = torch.tensor([self.rank]).float().cuda(self.rank)

        net_default_hook = FSDP(
            net,
            device_id=torch.cuda.current_device(),
            sharding_strategy=sharding_strategy
        ).to(self.rank)

        # Check that default hook is set to `all_reduce` for `NO_SHARD`
        # or `reduce_scatter` for sharded cases
        default_hook = default_hooks.reduce_scatter_hook\
            if sharding_strategy != ShardingStrategy.NO_SHARD\
            else default_hooks.allreduce_hook

        for entry in FSDP.fsdp_modules(net_default_hook):
            self.assertEqual(entry._communication_hook, default_hook)

        for _ in range(4):

            # Clear gradients
            net_default_hook.zero_grad()
            loss = net_default_hook(inpt).sum()
            loss.backward()

            # For each worker, the gradient on the weight should be worker_rank.
            grad = net_default_hook.params[0].grad
            expected_grad = (
                sum(i for i in range(dist.get_world_size())) / dist.get_world_size()
            )
            # Verify default hook produces expected gradients
            self.assertEqual(
                grad[0].item(),
                expected_grad,
                msg=f"Expected hook grad of {expected_grad} but got {grad[0].item()}")

    def _get_submodules(self, fsdp_net):
        return [
            submodule for submodule in FSDP.fsdp_modules(fsdp_net)
            if not submodule.check_is_root()
        ]

    def _init_model(self, core, sharding_strategy, mixed_precision=None):

        device = torch.device("cuda")
        return FSDP(
            core,
            device_id=torch.cuda.current_device(),
            sharding_strategy=sharding_strategy,
            mixed_precision=mixed_precision,
        ).to(device)

    @skip_if_lt_x_gpu(2)
    @parametrize("has_wrapping", [True, False])
    @parametrize(
        "sharding_strategy",
        [
            ShardingStrategy.NO_SHARD,
            ShardingStrategy.FULL_SHARD,
            ShardingStrategy.SHARD_GRAD_OP
        ])
    def test_default_communication_hook_initialization(
        self,
        has_wrapping: bool,
        sharding_strategy: Optional[ShardingStrategy]
    ):
        """
        Tests FSDP's communication hook interface behavior.

        Arguments:
            has_wrapping (bool): Configures wrapping of a module.
            sharding_strategy (Optional[ShardingStrategy]): Configures the FSDP algorithm.
        """

        # Initialize a model
        fsdp_model_with_hook = self._init_model(
            Net(has_wrapping=has_wrapping, sharding_strategy=sharding_strategy),
            sharding_strategy=sharding_strategy
        )

        # Check that default hook is set to `all_reduce` for `NO_SHARD`
        # or `reduce_scatter` for sharded cases
        default_hook = default_hooks.reduce_scatter_hook\
            if sharding_strategy != ShardingStrategy.NO_SHARD\
            else default_hooks.allreduce_hook

        for entry in FSDP.fsdp_modules(fsdp_model_with_hook):
            self.assertEqual(entry._communication_hook, default_hook)

        dummy_state = DummyState(process_group=None, noise=1234)
        dummy_hook = DummyHook.dummy_hook_for_no_shard_fsdp\
            if sharding_strategy != ShardingStrategy.NO_SHARD\
            else DummyHook.dummy_hook_for_sharded_fsdp

        fsdp_model_with_hook.register_comm_hook(
            dummy_state,
            dummy_hook
        )

        # Check that we can't register comm hook twice
        with self.assertRaisesRegex(AssertionError, '^communication hook can be only registered once$'):
            fsdp_model_with_hook.register_comm_hook(
                dummy_state,
                dummy_hook
            )

        # Check dummy hook was registered for the root and all submodules if any
        for entry in FSDP.fsdp_modules(fsdp_model_with_hook):
            self.assertEqual(
                entry._communication_hook,
                dummy_hook
            )
            self.assertEqual(
                entry._communication_hook_state,
                dummy_state
            )

        for entry in FSDP.fsdp_modules(fsdp_model_with_hook):
            entry._communication_hook = None

        in_data = torch.rand(16, 8).cuda()
        loss = fsdp_model_with_hook(in_data).sum()
        # This Error is raised during backward pass and is checked with `p_assert`,
        # i.e. it prints error string but AssertionError raises nothing
        with self.assertRaises(AssertionError):
            loss.backward()

        for entry in FSDP.fsdp_modules(fsdp_model_with_hook):
            entry._communication_hook = dummy_hook
            entry._communication_hook_state = None
        # Same as above
        loss = fsdp_model_with_hook(in_data).sum()
        with self.assertRaises(AssertionError):
            loss.backward()


    @skip_if_lt_x_gpu(2)
    @parametrize(
        "sharding_strategy",
        [
            ShardingStrategy.NO_SHARD,
            ShardingStrategy.FULL_SHARD,
            ShardingStrategy.SHARD_GRAD_OP
        ])
    def test_registering_hook_non_root(
        self,
        sharding_strategy: Optional[ShardingStrategy]
    ):
        """
        Tests FSDP's communication hook registering for submodules.
        Make sure it can't be registered for non-root submodules.
        Currently tests only ``NO_SHARD`` strategy.

        Arguments:
            sharding_strategy (Optional[ShardingStrategy]): Configures the FSDP algorithm.
        """

        fsdp_model_with_hook = self._init_model(
            Net(has_wrapping=True, sharding_strategy=sharding_strategy),
            sharding_strategy=sharding_strategy
        )
        dummy_state = DummyState(process_group=None, noise=1234)
        dummy_hook = DummyHook.dummy_hook_for_no_shard_fsdp\
            if sharding_strategy != ShardingStrategy.NO_SHARD\
            else DummyHook.dummy_hook_for_sharded_fsdp
        # Creating a list of non-root submodules to test
        submodules = self._get_submodules(fsdp_model_with_hook)
        # Check that assertion is raised for registering a comm hook on a non-root
        with self.assertRaisesRegex(AssertionError, '^register_comm_hook can only be called on a root instance.$'):
            submodules[1].register_comm_hook(dummy_state, dummy_hook)

    @skip_if_lt_x_gpu(2)
    @parametrize(
        "sharding_strategy",
        [
            ShardingStrategy.NO_SHARD,
            ShardingStrategy.FULL_SHARD,
            ShardingStrategy.SHARD_GRAD_OP
        ])
    def test_registering_hook_submodules(
        self,
        sharding_strategy: Optional[ShardingStrategy]
    ):
        """
        Tests FSDP's communication hook registering for submodules.
        Checks behavior if a hook was registered for a non-root submodule
        Currently tests only ``NO_SHARD`` strategy.

        Arguments:
            sharding_strategy (Optional[ShardingStrategy]): Configures the FSDP algorithm.
        """

        fsdp_model_with_hook = self._init_model(
            Net(has_wrapping=True, sharding_strategy=sharding_strategy),
            sharding_strategy=sharding_strategy
        )
        dummy_state = DummyState(process_group=None, noise=1234)
        dummy_hook = DummyHook.dummy_hook_for_no_shard_fsdp\
            if sharding_strategy != ShardingStrategy.NO_SHARD\
            else DummyHook.dummy_hook_for_sharded_fsdp
        submodules = self._get_submodules(fsdp_model_with_hook)

        # Simulate a registration of a hook on a submodule
        submodules[1]._hook_registered = True
        # Check that an error is raised when some of submodules have a non-default hook assigned
        with self.assertRaisesRegex(AssertionError, '^communication hook can be only registered once$'):
            fsdp_model_with_hook.register_comm_hook(dummy_state, dummy_hook)

        # Reinitialize the model
        fsdp_model_with_hook = self._init_model(
            Net(has_wrapping=True, sharding_strategy=sharding_strategy),
            sharding_strategy=sharding_strategy
        )
        submodules = self._get_submodules(fsdp_model_with_hook)
        submodules[1]._communication_hook = dummy_hook

        # Check that an error is raised when some of submodules have a non-default hook assigned
        with self.assertRaisesRegex(
            AssertionError,
            f'^communication hook should be default, but it is {submodules[1]._communication_hook.__name__} instead$'
        ):
            fsdp_model_with_hook.register_comm_hook(
                dummy_state,
                dummy_hook
            )

    def _check_low_precision_hook(self, state, hook, sharding_strategy, dtype, has_wrapping):
        # keep everything deterministic for input data
        torch.manual_seed(0)
        torch.cuda.manual_seed(0)

        fsdp_with_hook = self._init_model(
            Net(has_wrapping=has_wrapping, sharding_strategy=sharding_strategy),
            sharding_strategy=sharding_strategy
        )
        fsdp_with_hook.register_comm_hook(state, hook)

        mp_only_grad = MixedPrecision(reduce_dtype=dtype)
        fsdp_with_mp = self._init_model(
            Net(has_wrapping=has_wrapping, sharding_strategy=sharding_strategy, mixed_precision=mp_only_grad),
            sharding_strategy=sharding_strategy,
            mixed_precision=mp_only_grad
        )

        optim_hook = torch.optim.SGD(fsdp_with_hook.parameters(), lr=0.1)
        optim_mp = torch.optim.SGD(fsdp_with_mp.parameters(), lr=0.1)

        in_data = torch.rand(16, 8).cuda()
        fsdp_with_hook.train()
        fsdp_with_mp.train()
        loss_hook = fsdp_with_hook(in_data).sum()
        loss_mp = fsdp_with_mp(in_data).sum()
        loss_hook.backward()
        # Make sure grads were cast to the parameter's precision
        self.assertEqual(fsdp_with_hook.params[0].dtype, state.parameter_type)
        loss_mp.backward()
        optim_hook.step()
        optim_mp.step()

        dist.barrier()

        for hook_param, mp_param in zip(fsdp_with_hook.parameters(), fsdp_with_mp.parameters()):
            self.assertEqual(hook_param.grad, mp_param.grad)

    @requires_nccl()
    @skip_if_lt_x_gpu(2)
    @parametrize("has_wrapping", [True, False])
    @parametrize(
        "sharding_strategy",
        [
            ShardingStrategy.NO_SHARD,
            ShardingStrategy.FULL_SHARD,
            ShardingStrategy.SHARD_GRAD_OP
        ])
    def test_fp16_hook(
        self,
        has_wrapping: bool,
        sharding_strategy: Optional[ShardingStrategy]
    ):

        state = default_hooks.LowPrecisionState(process_group=_get_default_group())
        hook = default_hooks.fp16_compress_hook

        self._check_low_precision_hook(state, hook, sharding_strategy, torch.float16, has_wrapping)

    @requires_nccl()
    @requires_nccl_version((2, 10), "Need NCCL 2.10+ for BF16_COMPRESS")
    @sandcastle_skip_if(
        not BFLOAT16_AVAILABLE,
        "BFloat16 is only supported by CUDA 11+",
    )
    @skip_if_lt_x_gpu(2)
    @skip_if_rocm
    @parametrize("has_wrapping", [True, False])
    @parametrize(
        "sharding_strategy",
        [
            ShardingStrategy.NO_SHARD,
            ShardingStrategy.FULL_SHARD,
            ShardingStrategy.SHARD_GRAD_OP
        ])
    def test_bf16_hook(
        self,
        has_wrapping: bool,
        sharding_strategy: Optional[ShardingStrategy]
    ):

        state = default_hooks.LowPrecisionState(process_group=_get_default_group())
        hook = default_hooks.bf16_compress_hook

        self._check_low_precision_hook(state, hook, sharding_strategy, torch.bfloat16, has_wrapping)


instantiate_parametrized_tests(TestCommunicationHooks)

if __name__ == "__main__":
    run_tests()