1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
# Owner(s): ["oncall: distributed"]
import contextlib
import itertools
import sys
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import distributed as dist
from torch.distributed.fsdp import CPUOffload
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
ShardingStrategy,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize,
run_tests,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
@dataclass
class _GradAccConfig:
"""
This configures how gradients are accumulated in :meth:`_test_grad_acc`.
Each instance of this class represents ``num_iters``-many consecutive
iterations, where the ``no_sync()`` context manager is used or not as given
by ``use_no_sync``.
Attributes:
use_no_sync (bool): Indicates whether to use the ``no_sync()`` context
manager as the way to accumulate gradients.
num_iters (int): Number of iterations to accumulate gradients.
"""
use_no_sync: bool
num_iters: int
def __repr__(self) -> str:
# Override to remove any spaces in the string to appease the internal
# build's test name parser
return (
f"(use_no_sync={self.use_no_sync},"
f"num_iters={self.num_iters})"
)
@dataclass
class _GradAccConfigs:
"""
This wraps a :class:`list` of :class:`_GradAccConfig` instances with the
sole purpose of overriding :meth:`__repr__` to remove spaces.
"""
configs: List[_GradAccConfig]
def __repr__(self) -> str:
# Override to remove any spaces in the string to appease the internal
# build's test name parser
return (
"[" + ",".join(config.__repr__() for config in self.configs) + "]"
)
class TestGradAcc(FSDPTest):
"""Tests ``FullyShardedDataParallel``'s gradient accumulation via both its
``no_sync()`` context manager and without the context manager."""
def _test_grad_acc(
self,
batch_dim: int,
configs: List[_GradAccConfig],
cpu_offload: CPUOffload,
backward_prefetch: Optional[BackwardPrefetch],
sharding_strategy: ShardingStrategy,
):
"""
Tests gradient accumulation by comparing a run that trains sequentially
through some batches while accumulating gradients with a run that
trains on the concatenation of those batches in a single iteration.
The last iteration always synchronizes gradients regardless of what is
specified by the last element of ``configs``.
Arguments:
batch_dim (int): Batch dimension in the input tensor to be passed
into the model for the forward pass.
configs (List[_GradAccConfig]): :class:`list` of configurations
specifying how gradients are accumulated; for example, a list
corresponding to [(False, 2), (True, 2), (False, 2)] indicates
to accumulate over 2 + 2 + 2 = 6 total iterations, where the
first two do not use ``no_sync()``, the middle two do use
``no_sync()``, and the final two again do not use
``no_sync()``.
cpu_offload (CPUOffload): Configures CPU offloading.
backward_prefetch (Optional[BackwardPrefetch]): Specifies at which
point to prefetch the next layer's full parameters during the
backward pass, if at all.
"""
# Gradient accumulation outside `no_sync()` is not currently compatible
# with CPU offloading
if (
cpu_offload.offload_params
and any(not config.use_no_sync for config in configs)
):
return
old_allow_tf32 = torch.backends.cuda.matmul.allow_tf32
try:
# Disable TF32 to prevent floating point drift
torch.backends.cuda.matmul.allow_tf32 = False
# Initialize the FSDP model and optimizer
fsdp_kwargs = {
"cpu_offload": cpu_offload,
"backward_prefetch": backward_prefetch,
"sharding_strategy": sharding_strategy,
}
fsdp_model: FSDP = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_AFTER,
fsdp_kwargs,
deterministic=True,
add_bn=False, # disable BN since the test uses varying batch sizes
)
device = torch.device("cuda")
optim = torch.optim.SGD(
fsdp_model.parameters(), lr=0.01, momentum=0.9,
)
# Generate the sequence of batches, each containing the same data
# but permuted
def permute_tensor(x: torch.Tensor):
return x.view(-1)[torch.randperm(x.numel())].view_as(x)
batch: Tuple[torch.Tensor, ...] = \
fsdp_model.module.get_input(device)
batches: List[Tuple[torch.Tensor, ...]] = [batch]
num_iters_to_acc = sum(config.num_iters for config in configs)
for _ in range(num_iters_to_acc - 1):
batches.append(tuple(permute_tensor(t) for t in batch))
for (batch1, batch2) in itertools.combinations(batches, r=2):
for t1, t2 in zip(batch1, batch2):
assert not torch.all(t1 == t2), \
"Check the test to make sure that batches are distinct"
# Concatenate the batches along the given batch dimension
concat_batch: Tuple[torch.Tensor, ...] = tuple(
torch.cat(ts, dim=batch_dim) for ts in zip(*batches)
)
# Establish reference gradients using the concatenated batch
fsdp_model.zero_grad()
output = fsdp_model(*concat_batch)
ref_loss = fsdp_model.module.get_loss(concat_batch, output)
ref_loss.backward()
ref_grads = [
p.grad.detach().clone() for p in fsdp_model.parameters()
]
# Compute and accumulate the gradients
fsdp_model.zero_grad()
losses = []
batch_idx = 0
for config in configs:
sync_context = fsdp_model.no_sync() if config.use_no_sync \
else contextlib.suppress()
with sync_context:
for _ in range(config.num_iters):
if batch_idx == num_iters_to_acc - 1:
break # always sync on the last iteration
batch = batches[batch_idx]
batch_idx += 1
output = fsdp_model(*batch)
loss = fsdp_model.module.get_loss(batch, output)
loss.backward()
losses.append(loss)
output = fsdp_model(*batches[-1])
loss = fsdp_model.module.get_loss(batches[-1], output)
loss.backward()
losses.append(loss)
acc_loss = sum(losses)
acc_grads = [
p.grad.detach().clone() for p in fsdp_model.parameters()
]
# Compare the losses and gradients
torch.testing.assert_close(ref_loss, acc_loss)
self.assertEqual(len(ref_grads), len(acc_grads))
for ref_grad, acc_grad in zip(ref_grads, acc_grads):
self.assertEqual(ref_grad.device, acc_grad.device)
self.assertEqual(ref_grad.size(), acc_grad.size())
self.assertEqual(ref_grad.dtype, acc_grad.dtype)
torch.testing.assert_close(ref_grad, acc_grad)
# Check that the optimizer step does not error
optim.step()
finally:
torch.backends.cuda.matmul.allow_tf32 = old_allow_tf32
def _get_subtest_config(self) -> Dict[str, List[Any]]:
"""Returns a subtest configuration that subtests prefetching."""
return {
"backward_prefetch": [
None,
BackwardPrefetch.BACKWARD_PRE,
BackwardPrefetch.BACKWARD_POST,
]
}
@skip_if_lt_x_gpu(2)
@parametrize(
"configs",
[
_GradAccConfigs([
_GradAccConfig(use_no_sync=True, num_iters=3),
_GradAccConfig(use_no_sync=False, num_iters=3),
_GradAccConfig(use_no_sync=True, num_iters=3),
]),
_GradAccConfigs([
_GradAccConfig(use_no_sync=False, num_iters=3),
_GradAccConfig(use_no_sync=True, num_iters=3),
_GradAccConfig(use_no_sync=False, num_iters=3),
]),
]
)
@parametrize(
"cpu_offload",
[CPUOffload(offload_params=False), CPUOffload(offload_params=True)],
)
@parametrize(
"sharding_strategy",
[
ShardingStrategy.FULL_SHARD,
ShardingStrategy.SHARD_GRAD_OP,
ShardingStrategy.NO_SHARD,
]
)
def test_grad_acc(
self,
configs: _GradAccConfigs,
cpu_offload: CPUOffload,
sharding_strategy: ShardingStrategy,
):
"""
Tests gradient accumulation.
This exercises gradient accumulation inside and outside the
``no_sync()`` context manager, in particular by interleaving the two.
It tests both interleaving starting with (and ending with, resp.)
inside versus outside ``no_sync()`` to ensure that initial conditions
(and final conditions, resp.) do not affect the correctness. This test
also checks for compatibility with the CPU offload and backward
prefetch options.
NOTE: Gradient accumulation without using the ``no_sync()`` context
manager is not currently compatible with CPU offloading, so those tests
are vacuous.
"""
self.run_subtests(
self._get_subtest_config(),
self._test_grad_acc,
batch_dim=1,
configs=configs.configs,
cpu_offload=cpu_offload,
sharding_strategy=sharding_strategy,
)
instantiate_parametrized_tests(TestGradAcc)
if __name__ == "__main__":
run_tests()
|