File: test_fsdp_ignored_modules.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (210 lines) | stat: -rw-r--r-- 8,229 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Owner(s): ["oncall: distributed"]

import sys

import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
    CUDAInitMode,
    FSDPInitMode,
    FSDPTest,
    TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
    TEST_WITH_DEV_DBG_ASAN,
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
)

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


class Model(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.layer0 = torch.nn.Linear(3, 5)
        layer1_modules = [
            torch.nn.Linear(5, 4),
            torch.nn.Linear(4, 4),
            torch.nn.Linear(4, 4),
        ]
        self.layer1 = torch.nn.Sequential(*layer1_modules)
        self.layer2 = torch.nn.Linear(4, 2)
        self.layer3 = torch.nn.Linear(2, 2)
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        z = self.relu(self.layer0(x))
        z = self.relu(self.layer1(z))
        z = self.relu(self.layer2(z))
        z = self.relu(self.layer3(z))
        return z

    def get_input(self, device):
        return (torch.randn((8, 3)).to(device),)

    def get_loss(self, input, output):
        return output.sum()

    def run_backward(self, loss):
        loss.backward()


class IgnoredModule(torch.nn.Module):
    def __init__(self, in_dim: int, out_dim: int) -> None:
        super().__init__()
        self.weight = torch.nn.Parameter(torch.randn((in_dim, out_dim)))

    def forward(self, x):
        return x @ self.weight


class ModelWithIgnoredModules(Model):
    """Adds a variable number of :class:`IgnoredModule` to ``self.layer1``."""
    def __init__(self, num_ignored: int) -> None:
        assert num_ignored >= 0
        super().__init__()
        layer1_modules = [torch.nn.Linear(5, 4), torch.nn.Linear(4, 4)] + \
            [IgnoredModule(4, 4) for _ in range(num_ignored)] + \
            [torch.nn.Linear(4, 4)]
        self.layer1 = torch.nn.Sequential(*layer1_modules)


class TestFSDPIgnoredModules(FSDPTest):
    def _train_model(self, model, optim, num_iters, device=torch.device("cuda")):
        for _ in range(num_iters):
            inp = model.module.get_input(device)
            output = model(*inp)
            loss = model.module.get_loss(inp, output).to(device)
            model.module.run_backward(loss)
            optim.step()

    @skip_if_lt_x_gpu(2)
    def test_ignored_modules_transformer(self):
        """Tests that ignored modules' parameters are not flattened for a
        transformer model with shared parameters."""
        # Initialize an FSDP-wrapped transformer model that has FSDP ignore
        # the `nn.Transformer` module's parameters
        model: nn.Module = TransformerWithSharedParams.init(
            self.process_group,
            FSDPInitMode.NO_FSDP,
            CUDAInitMode.CUDA_BEFORE,
            deterministic=True,
        )
        wrapped_model = FSDP(
            model,
            self.process_group,
            ignored_modules=[model.transformer],
        )
        # Check that the wrapped model's flattened parameter does not include
        # the ignored transformer module's parameters
        nonwrapped_model: nn.Module = TransformerWithSharedParams.init(
            self.process_group,
            FSDPInitMode.NO_FSDP,
            CUDAInitMode.CUDA_BEFORE,
            deterministic=True,
        )
        total_numel = sum(p.numel() for p in nonwrapped_model.parameters())
        ignored_numel = sum(
            p.numel() for p in nonwrapped_model.transformer.parameters()
        )
        nonignored_numel = total_numel - ignored_numel
        with FSDP.summon_full_params(wrapped_model):
            flat_param_numel = wrapped_model.params[0].numel()
            self.assertEqual(flat_param_numel, nonignored_numel)
        # Check that we can run a few iterations
        optim = torch.optim.Adam(wrapped_model.parameters(), lr=1e-3)
        self._train_model(wrapped_model, optim, 3)

    @skip_if_lt_x_gpu(2)
    def test_ignored_modules_nested(self):
        """Tests that passing a module with nested FSDP modules does not
        error and still ignores non-FSDP modules' parameters."""
        # Initialize an FSDP-wrapped nested model that first wraps the nested
        # sequential's second linear layer (`layer1[1]`) and then wraps the
        # overall model while ignoring the nested sequential (`layer1`)
        model = Model().cuda()
        model.layer1[1] = FSDP(model.layer1[1])
        wrapped_model = FSDP(model, ignored_modules=[model.layer1])
        # Check that the wrapped model's flattened parameter does not include
        # the ignored nested sequential's parameters
        nonwrapped_model = Model()
        total_numel = sum(p.numel() for p in nonwrapped_model.parameters())
        ignored_numel = sum(
            p.numel() for p in nonwrapped_model.layer1.parameters()
        )
        nonignored_numel = total_numel - ignored_numel
        with FSDP.summon_full_params(wrapped_model):
            flat_param_numel = wrapped_model.params[0].numel()
            self.assertEqual(flat_param_numel, nonignored_numel)
        # Check that we can run a few iterations
        optim = torch.optim.Adam(wrapped_model.parameters(), lr=1e-3)
        self._train_model(wrapped_model, optim, 3)

    @skip_if_lt_x_gpu(2)
    def test_ignored_modules_invalid(self):
        """Tests that passing an FSDP module as an ignored module or the
        top-level module itself errors."""
        model = Model().cuda()
        model.layer1 = FSDP(model.layer1)
        # Passing an FSDP module as an ignored module should error
        with self.assertRaises(
            ValueError,
            msg="`ignored_modules` should not include FSDP modules",
        ):
            FSDP(model, ignored_modules=[model.layer1])
        with self.assertWarnsRegex(
            expected_warning=UserWarning,
            expected_regex="Trying to ignore the top-level module passed into "
            "the FSDP constructor itself will result in all parameters being "
            "ignored",
        ):
            FSDP(model, ignored_modules=[model])

    @skip_if_lt_x_gpu(2)
    @parametrize("pass_ignored_modules_to_root", [False, True])
    def test_diff_ignored_modules_across_ranks(self, pass_ignored_modules_to_root: bool):
        """
        Tests ignoring different modules across ranks.

        Args:
            pass_ignored_modules_to_root (bool): If ``False``, does not pass
                any ignored modules (including those already ignored in child
                FSDP instances) to the root FSDP instance; if ``True``, passes
                all ignored modules (representing a superset of the children's
                ignored modules) to the root FSDP instance.
        """
        # To exercise different `FlatParameter` enumerations across ranks,
        # we wrap `layer3` with FSDP, where `layer3` is registered as a module
        # after `layer1`, which has the variable number of ignored modules
        model = ModelWithIgnoredModules(num_ignored=self.rank + 1).cuda()
        layer1_ignored_modules = [
            m for m in model.layer1.modules() if isinstance(m, IgnoredModule)
        ]
        model.layer1 = FSDP(model.layer1, ignored_modules=layer1_ignored_modules)
        model.layer3 = FSDP(model.layer3)
        model_ignored_modules = [
            m for m in model.modules() if isinstance(m, IgnoredModule)
        ] if pass_ignored_modules_to_root else []
        wrapped_model = FSDP(model, ignored_modules=model_ignored_modules)
        optim = torch.optim.Adam(wrapped_model.parameters(), lr=1e-3)
        self._train_model(wrapped_model, optim, 3)


instantiate_parametrized_tests(TestFSDPIgnoredModules)

if __name__ == "__main__":
    run_tests()