File: test_fsdp_input.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (79 lines) | stat: -rw-r--r-- 2,143 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Owner(s): ["oncall: distributed"]

import sys

import torch
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn import Linear, Module
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
    FSDPTest,
)
from torch.testing._internal.common_utils import (
    TEST_WITH_DEV_DBG_ASAN,
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    subtest,
)


if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


class TestInput(FSDPTest):
    @property
    def world_size(self):
        return 1

    @skip_if_lt_x_gpu(1)
    @parametrize("input_cls", [subtest(dict, name="dict"), subtest(list, name="list")])
    def test_input_type(self, input_cls):
        """Test FSDP with input being a list or a dict, only single GPU."""

        class Model(Module):
            def __init__(self):
                super().__init__()
                self.layer = Linear(4, 4)

            def forward(self, input):
                if isinstance(input, list):
                    input = input[0]
                else:
                    assert isinstance(input, dict), input
                    input = input["in"]
                return self.layer(input)

        model = FSDP(Model()).cuda()
        optim = SGD(model.parameters(), lr=0.1)

        for _ in range(5):
            in_data = torch.rand(64, 4).cuda()
            in_data.requires_grad = True
            if input_cls is list:
                in_data = [in_data]
            else:
                self.assertTrue(input_cls is dict)
                in_data = {"in": in_data}

            out = model(in_data)
            out.sum().backward()
            optim.step()
            optim.zero_grad()


instantiate_parametrized_tests(TestInput)

if __name__ == "__main__":
    run_tests()