1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
# Owner(s): ["oncall: distributed"]
import sys
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import always_wrap_policy as always_wrap
from torch.distributed.fsdp.wrap import wrap, enable_wrap
from torch.testing._internal.common_fsdp import (
FSDPTest,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
parametrize,
instantiate_parametrized_tests,
sandcastle_skip_if,
)
from torch.testing._internal.common_distributed import (
skip_if_lt_x_gpu,
)
_TORCHDISTX_AVAIL = True
try:
from torchdistx import deferred_init
except ImportError:
_TORCHDISTX_AVAIL = False
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
def _reset_params_if_meta(is_meta, model):
# For torchdistX init, we don't need to call reset_params, as
# deferred_init(model).materialize() is equivalent to model().
if is_meta:
model.reset_parameters()
class MyLinear(nn.Linear):
"""
Linear layer with deterministic reset_parameters for testing.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def reset_parameters(self, *args, **kwargs):
with torch.no_grad():
self.weight.fill_(1)
class MyModel(nn.Module):
def __init__(self, device):
super().__init__()
self.lin1 = MyLinear(2, 2, bias=False, device=device)
self.lin2 = MyLinear(2, 2, bias=False, device=device)
def forward(self, x):
return self.lin2(self.lin1(x))
def reset_parameters(self, *args, **kwargs):
for m in [self.lin1, self.lin2]:
if not isinstance(m, FSDP):
m.reset_parameters()
class NestedModel(nn.Module):
def __init__(self, device):
super().__init__()
self.lin1 = MyLinear(2, 2, bias=False, device=device)
self.lin1 = wrap(self.lin1)
self.lin2 = MyLinear(2, 2, bias=False, device=device)
self.l3 = MyModel(device=device)
self.l3 = wrap(self.l3)
def forward(self, x):
return self.l3(self.lin2(self.lin1(x)))
def reset_parameters(self):
for m in [self.lin1, self.lin2, self.l3]:
if not isinstance(m, FSDP):
m.reset_parameters()
def _init_with_reset_params(module):
"""
to_empty + reset_parameters() init function example for modules
initailized with device="meta"
"""
is_meta = any(t.is_meta for t in module.parameters())
if is_meta:
module.to_empty(device=torch.cuda.current_device())
with torch.no_grad():
module.reset_parameters()
def _init_with_torchdistX(module):
"""
torchdistX-based deferred module initialization function example
using ``materialize_module``.
"""
assert _TORCHDISTX_AVAIL
def check_fn(k):
return not isinstance(k, FSDP)
deferred_init.materialize_module(module, check_fn=check_fn)
class TestFSDPWithMetaDevice(FSDPTest):
@property
def world_size(self):
return 2
@property
def process_group(self):
return dist.distributed_c10d._get_default_group()
def _compare_fsdp(self, fsdp1, fsdp2):
with FSDP.summon_full_params(fsdp1):
with FSDP.summon_full_params(fsdp2):
for p1, p2 in zip(fsdp1.parameters(), fsdp2.parameters()):
self.assertTrue(torch.allclose(p1, p2), f"{p1} vs {p2}")
def _test_simple_model_with_meta_device(self, meta_module_fn, init_fn=None):
# Create model on meta device and wrap with FSDP.
model = meta_module_fn()
is_meta = next(model.parameters()).is_meta
fsdp_meta = FSDP(
model,
auto_wrap_policy=always_wrap,
param_init_fn=init_fn,
)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
# Test to make sure it is the same model parameters as regular FSDP
# approach.
regular = MyModel(device="cuda")
_reset_params_if_meta(is_meta, regular)
fsdp_regular = FSDP(regular, auto_wrap_policy=always_wrap)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
self._compare_fsdp(fsdp_meta, fsdp_regular)
inp = torch.randn(10, 2, device='cuda')
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
# Test that meta init works if all submodules are contained in only a
# single FSDP unit.
model = meta_module_fn()
fsdp_meta = FSDP(model, param_init_fn=init_fn)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
regular = MyModel(device="cuda")
_reset_params_if_meta(is_meta, regular)
fsdp_regular = FSDP(regular, auto_wrap_policy=always_wrap)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
# Run a forward + backward pass + optimizer step
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
@skip_if_lt_x_gpu(2)
def test_simple_model_with_meta_device_reset_params(self):
def meta_module_fn():
return MyModel(device="meta")
self._test_simple_model_with_meta_device(
meta_module_fn, _init_with_reset_params
)
@skip_if_lt_x_gpu(2)
def test_simple_model_with_meta_device_default_init(self):
def meta_module_fn():
return MyModel(device="meta")
self._test_simple_model_with_meta_device(meta_module_fn)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL, "Test requires torchdistX: https://github.com/pytorch/torchdistX"
)
def test_simple_model_with_torchdistX_default_init(self):
def meta_module_fn():
return deferred_init.deferred_init(MyModel, device="cuda")
self._test_simple_model_with_meta_device(meta_module_fn)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL, "Test requires torchdistX: https://github.com/pytorch/torchdistX"
)
def test_simple_model_with_torchdistX_init_fn(self):
def meta_module_fn():
return deferred_init.deferred_init(MyModel, device="cuda")
self._test_simple_model_with_meta_device(meta_module_fn, init_fn=_init_with_torchdistX)
def _test_nested_model_with_meta_device(self, auto_wrap, meta_module_fn, init_fn=None):
if auto_wrap:
module = meta_module_fn()
is_meta = next(module.parameters()).is_meta
fsdp_meta = FSDP(
module,
auto_wrap_policy=always_wrap,
param_init_fn=init_fn,
)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
module_regular = NestedModel(device="cuda")
_reset_params_if_meta(is_meta, module_regular)
fsdp_regular = FSDP(
module_regular,
auto_wrap_policy=always_wrap,
)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
else:
with enable_wrap(
wrapper_cls=FSDP, param_init_fn=init_fn,
):
module = meta_module_fn()
is_meta = next(module.parameters()).is_meta
# Non FSDP modules will still be initialized because they bubble up
# to be part of a larger FSDP unit.
fsdp_meta = wrap(module)
meta_opt = torch.optim.SGD(fsdp_meta.parameters(), lr=1e-3)
# Init and reset parameters before wrapping so that reset_params
# matches up with meta device's initialization.
module_regular = NestedModel(device="cuda")
_reset_params_if_meta(is_meta, module_regular)
with enable_wrap(wrapper_cls=FSDP):
module_regular.lin1 = wrap(module_regular.lin1)
module_regular.l3 = wrap(module_regular.l3)
fsdp_regular = wrap(module_regular)
regular_opt = torch.optim.SGD(fsdp_regular.parameters(), lr=1e-3)
# Compare it before training
self._compare_fsdp(fsdp_meta, fsdp_regular)
inp = torch.randn(10, 2, device='cuda')
fsdp_meta(inp).sum().backward()
fsdp_regular(inp).sum().backward()
meta_opt.step()
regular_opt.step()
self._compare_fsdp(fsdp_meta, fsdp_regular)
@skip_if_lt_x_gpu(2)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_meta_device_reset_params(self, auto_wrap):
def meta_module_fn():
return NestedModel(device="meta")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap, meta_module_fn=meta_module_fn, init_fn=_init_with_reset_params
)
@skip_if_lt_x_gpu(2)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_meta_device_default_init(self, auto_wrap):
def meta_module_fn():
return NestedModel(device="meta")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap, meta_module_fn=meta_module_fn,
)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL, "Test requires torchdistX: https://github.com/pytorch/torchdistX"
)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_torchdistX_default_init(self, auto_wrap):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, device="cuda")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap, meta_module_fn=meta_module_fn
)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL, "Test requires torchdistX: https://github.com/pytorch/torchdistX"
)
@parametrize("auto_wrap", [True, False])
def test_nested_model_with_torchdistX_init_fn(self, auto_wrap):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, device="cuda")
self._test_nested_model_with_meta_device(
auto_wrap=auto_wrap, meta_module_fn=meta_module_fn, init_fn=_init_with_torchdistX,
)
def _test_bad_arg(self, meta_module_fn):
mod = meta_module_fn()
with self.assertRaisesRegex(ValueError, "to be callable"):
FSDP(mod, param_init_fn=42)
@skip_if_lt_x_gpu(2)
@sandcastle_skip_if(
not _TORCHDISTX_AVAIL, "Test requires torchdistX: https://github.com/pytorch/torchdistX"
)
def test_bad_arg_torchdistx(self):
def meta_module_fn():
return deferred_init.deferred_init(NestedModel, "cuda")
self._test_bad_arg(meta_module_fn)
@skip_if_lt_x_gpu(2)
def test_bad_arg_meta(self):
def meta_module_fn():
return NestedModel(device="meta")
self._test_bad_arg(meta_module_fn)
instantiate_parametrized_tests(TestFSDPWithMetaDevice)
if __name__ == "__main__":
run_tests()
|