1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
# Owner(s): ["oncall: distributed"]
import contextlib
import sys
from functools import partial
from itertools import product
from typing import Any, Dict, List
import torch
import torch.cuda.nccl as nccl
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed as dist
from torch.distributed.fsdp import BackwardPrefetch, CPUOffload
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
from torch.nn.modules.batchnorm import _BatchNorm
from torch.testing._internal.common_cuda import CUDA11OrLater
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
subtest_name,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize,
run_tests,
sandcastle_skip_if,
)
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = sandcastle_skip_if(not HAS_TORCHVISION, "no torchvision")
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
# Various mixed precision configs to test under.
default_mp = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
# Params and buffers are not cast, comm only happens
# in reduced precision.
mp_only_reduce = MixedPrecision(reduce_dtype=torch.float16)
# Only parameters are cast (thus comm should happen in the param_dtype precision)
mp_only_param_and_buf = MixedPrecision(param_dtype=torch.float16, buffer_dtype=torch.float16)
# Nothing is cast (thus param, comm, grad, and buffer should be in the full precision)
mp_no_mixed_precision = MixedPrecision()
nccl_supports_bf16 = (
CUDA11OrLater and dist.is_nccl_available() and nccl.version() >= (2, 10)
)
mp_configs = [default_mp, mp_only_reduce, mp_only_param_and_buf, mp_no_mixed_precision]
if nccl_supports_bf16:
mp_diff_buffer_and_reduce = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.bfloat16,
reduce_dtype=torch.float32
)
mp_configs.extend([mp_diff_buffer_and_reduce])
# Buffer original dtype, which can differ from model params.
_BUFFER_ORIG_DTYPE = torch.float64
params = "mp_config,cpu_offload,full_precision_param_dtype,enable_sharded_grad_scaler"
cpu_offload_config = [
CPUOffload(offload_params=True), CPUOffload(offload_params=False)
]
full_precision_param_dtype_config = [torch.float32, torch.float64]
enable_sharded_grad_scaler = ["enable_sharded_grad_scaler", None]
configs = list(product(
mp_configs,
cpu_offload_config,
full_precision_param_dtype_config,
enable_sharded_grad_scaler,
))
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(default_mp): "mp_fp16",
str(mp_only_reduce): "mp_only_reduce",
str(mp_only_param_and_buf): "mp_only_param_and_buf",
str(mp_no_mixed_precision): "mp_no_mp",
str(torch.float32): "fp32",
str(torch.float64): "fp64",
"enable_sharded_grad_scaler": "enable_sharded_grad_scaler"
}
if nccl_supports_bf16:
test_name_mapping.update({
str(mp_diff_buffer_and_reduce): "mp_diff_buffer_reduce",
})
subtest_name = partial(subtest_name, test_name_mapping)
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
@contextlib.contextmanager
def patch_reduce_scatter(new_reduce_scatter, full_precision_param_dtype):
"""
Patches dist._reduce_scatter_base with a new reduce_scatter_base and
restores upon exiting. Used for validation of mixed precision
"""
orig_reduce_scatter = dist._reduce_scatter_base
dist._reduce_scatter_base = new_reduce_scatter
global _CURRENT_FULL_PRECISION_PARAM_DTYPE
_CURRENT_FULL_PRECISION_PARAM_DTYPE = full_precision_param_dtype
try:
yield
finally:
dist._reduce_scatter_base = orig_reduce_scatter
_CURRENT_FULL_PRECISION_PARAM_DTYPE = None
class LinearMixedPrecision(nn.Module):
"""
A linear module with extra checks for mixed precision training.
"""
def __init__(self, param_dtype):
super().__init__()
self.lin = nn.Linear(10, 10, bias=False).to(param_dtype)
self.register_buffer('buffer', torch.randn((1, 2), dtype=_BUFFER_ORIG_DTYPE))
self._orig_param_type = param_dtype
self._orig_buffer_dtype = _BUFFER_ORIG_DTYPE
def forward(self, tup):
# Param and input should be the mixed precision type
inp, cls, fsdp, mp_config, full_precision_param_dtype = tup
expected_param_type = (
mp_config.param_dtype if mp_config.param_dtype is not None
else self._orig_param_type
)
expected_buffer_type = (
mp_config.buffer_dtype if mp_config.buffer_dtype is not None
else self._orig_buffer_dtype
)
cls.assertEqual(inp.dtype, expected_param_type)
# Buffer should be in specified precision as well.
cls.assertEqual(self.buffer.dtype, expected_buffer_type)
# In FSDP, self.params should point to the right type.
num_active_fsdp = 0
for fsdp_module in FSDP.fsdp_modules(fsdp):
fsdp_managed_params = fsdp_module.params
# Single param assumption
cls.assertEqual(1, len(fsdp_managed_params))
for param in fsdp_managed_params:
# FSDP unit is currently active if it is not using the param
# local shard. This supports both FULL_SHARD and SHARD_GRAD_OP
# cases. In FULL_SHARD, we have the additional property that
# param._full_param_padded has not been freed.
param_is_sharded = (
fsdp_module.sharding_strategy != ShardingStrategy.NO_SHARD
and fsdp_module.world_size > 1
)
is_fsdp_unit_active = (
param_is_sharded
and param.data.data_ptr() != param._local_shard.data_ptr()
)
if is_fsdp_unit_active:
num_active_fsdp += 1
# This FSDP unit is active, verify param points to mixed
cls.assertEqual(param.dtype, expected_param_type)
# _rebuild_full_param should have also freed the fp16 shard.
# Shard is never allocated if param_dtype mixed precision is not
# enabled.
if mp_config.param_dtype is not None:
cls.assertEqual(0, param._mp_shard.storage().size())
else:
cls.assertFalse(hasattr(param, '_mp_shard'))
elif param_is_sharded:
# This FSDP unit is not active as full param has been
# freed or not yet allocated. Ensure param points to full
# precision param.
cls.assertEqual(param.dtype, full_precision_param_dtype)
# We should have gotten at least one active FSDP unit for sharded
# (world size > 1) cases. For cases where param is not sharded
# (ie world_size == 1) it is a bit hard to check if FSDP unit is active
# as we'd always point to the local shard, so we rely on the forward
# pass self.lin(inp) working well and inp being reduced precision to
# implicitly validate that the param is indeed in the reduced precision.
if cls.world_size > 1:
cls.assertGreater(num_active_fsdp, 0)
return (self.lin(inp), cls, fsdp, mp_config, full_precision_param_dtype)
class TestFSDPMixedPrecision(FSDPTest):
@property
def world_size(self):
raise ValueError("To be implemented by child classes")
def _get_simple_nested_model(self, param_dtype, *fsdp_args, **fsdp_kwargs):
model = FSDP(
nn.Sequential(
FSDP(LinearMixedPrecision(param_dtype).cuda(), *fsdp_args, **fsdp_kwargs),
LinearMixedPrecision(param_dtype).cuda(),
),
*fsdp_args,
**fsdp_kwargs,
)
return model
def _get_simple_model(self, param_dtype, *fsdp_args, **fsdp_kwargs):
model = FSDP(LinearMixedPrecision(param_dtype).cuda(), *fsdp_args, **fsdp_kwargs)
return model
def _validate_no_mp_shard(self, fsdp_model):
"""
Validates that there is no mixed precision _mp_shard allocated
when it is not expected to be.
"""
fsdp_units = FSDP.fsdp_modules(fsdp_model)
for fsdp in fsdp_units:
for param in fsdp.params:
self.assertFalse(hasattr(param, '_mp_shard'))
def _validate_mp_shard_freed(self, fsdp_model):
"""
Ensures that the mixed precision shard is greed for all FSDP units.
"""
fsdp_units = FSDP.fsdp_modules(fsdp_model)
for fsdp in fsdp_units:
for param in fsdp.params:
self.assertEqual(0, param._mp_shard.storage().size())
def _reduce_scatter_base_validate_mp(
self,
orig_reduce_scatter,
mp_config,
*args,
**kwargs
):
"""
Performs dist._reduce_scatter_base but verifies mixed precision settings
before. This is to test mixed precision is working as expected during
backward pass. In particular it ensures that the gradients were cast to the right type
and comm. is going to happen in the right type.
"""
tensors = []
for x in args:
if isinstance(x, torch.Tensor):
tensors.append(x)
for _, x in kwargs.items():
if isinstance(x, torch.Tensor):
tensors.append(x)
# reduce_dtype has higher priority than param_dtype, because mixed_precision
# supports overriding param_dtype with reduce_dtype to control the
# reduction precision. In the case where reduce_dtype == param_dtype
# this tests that gradients are in the expected precision as well.
# If reduce_dtype is not specified (is None) we comm. in the param_dtype
# if that is specified, otherwise full precision dtype.
expected_dtype = (
mp_config.reduce_dtype if mp_config.reduce_dtype is not None
else (
mp_config.param_dtype if mp_config.param_dtype is not None
else _CURRENT_FULL_PRECISION_PARAM_DTYPE
)
)
for t in tensors:
self.assertEqual(expected_dtype, t.dtype)
return orig_reduce_scatter(*args, **kwargs)
def _test_grads_reduced_precision(self):
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.lin1 = nn.Linear(10, 10)
self.lin2 = nn.Linear(10, 10)
def forward(self, x):
return self.lin2(self.lin1(x))
m = MyModel().cuda()
mp = MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
keep_low_precision_grads=True,
)
m.lin1 = FSDP(m.lin1, mixed_precision=mp)
m = FSDP(m, mixed_precision=mp)
for _ in range(6):
inp = torch.ones(1, 10)
m(inp).sum().backward()
for param in m.parameters():
self.assertEqual(torch.float16, param.grad.dtype)
dist.barrier()
def _run_test_mixed_precision_e2e(
self,
mp_config,
cpu_offload,
backward_prefetch,
forward_prefetch,
full_precision_param_dtype,
sharding_strategy,
enable_sharded_grad_scaler,
):
torch.cuda.set_device(self.rank)
fsdp_models = [
self._get_simple_model(
param_dtype=full_precision_param_dtype,
sharding_strategy=sharding_strategy,
cpu_offload=cpu_offload,
mixed_precision=mp_config,
backward_prefetch=backward_prefetch,
forward_prefetch=forward_prefetch,
),
self._get_simple_nested_model(
param_dtype=full_precision_param_dtype,
sharding_strategy=sharding_strategy,
cpu_offload=cpu_offload,
mixed_precision=mp_config,
backward_prefetch=backward_prefetch,
forward_prefetch=forward_prefetch,
),
]
for model in fsdp_models:
if not cpu_offload.offload_params:
model.cuda()
# Patch reduce_scatter to add validation for mixed precision types.
orig_reduce_scatter = dist._reduce_scatter_base
test_reduce_scatter = partial(
self._reduce_scatter_base_validate_mp, orig_reduce_scatter, mp_config,
)
with patch_reduce_scatter(test_reduce_scatter, full_precision_param_dtype):
scaler = ShardedGradScaler(enabled=enable_sharded_grad_scaler)
optim = torch.optim.Adam(model.parameters())
for _ in range(3):
inp = torch.randn(3, 10, device='cuda', dtype=full_precision_param_dtype)
# Forward pass of LinearMixedPrecision check casting of
# inputs, params, buffers.
act, *_ = model(
(inp, self, model, mp_config, full_precision_param_dtype)
)
# Buffers should be casted.
for buf in model.buffers():
if mp_config.buffer_dtype is not None:
self.assertEqual(buf.dtype, mp_config.buffer_dtype)
else:
self.assertEqual(buf.dtype, _BUFFER_ORIG_DTYPE)
# p._mp_shard should be freed.
if mp_config.param_dtype is not None:
self._validate_mp_shard_freed(model)
else:
# We never should have allocated an _mp_shard.
self._validate_no_mp_shard(model)
loss = act.sum()
loss = scaler.scale(loss)
if mp_config.param_dtype is not None:
self.assertEqual(loss.dtype, mp_config.param_dtype)
else:
self.assertEqual(loss.dtype, full_precision_param_dtype)
# Will run patched reduce scatter that validates mixed_precision
# types in backward.
loss.backward()
# Buffers stay casted even after backwards.
for buf in model.buffers():
if mp_config.buffer_dtype is not None:
self.assertEqual(buf.dtype, mp_config.buffer_dtype)
else:
self.assertEqual(buf.dtype, _BUFFER_ORIG_DTYPE)
# p._mp_shard should be freed.
if mp_config.param_dtype is not None:
self._validate_mp_shard_freed(model)
else:
self._validate_no_mp_shard(model)
# Ensure params and grads are in full precision,
# as after fwd/backward we maintain full precision shards.
for param in model.parameters():
self.assertEqual(param.dtype, full_precision_param_dtype)
if param.grad is not None:
self.assertEqual(param.grad.dtype, full_precision_param_dtype)
# Unscale the gradients and step
scaler.step(optim)
# Update the scale factor
scaler.update()
# Summon full params should be in full precision
with model.summon_full_params(model):
# It is not expected for summon_full_params to allocate
# a mixed precision shard.
if mp_config.param_dtype is not None:
self._validate_mp_shard_freed(model)
else:
self._validate_no_mp_shard(model)
params = list(model.parameters())
for p in params:
self.assertEqual(p.dtype, full_precision_param_dtype)
# Note that buffers are cast only once and only restored
# to the original buffer dtype in state_dict, so
# summon_full_params is not expected to restore buffer
# types to their original.
named_buffers = dict(model.named_buffers())
for v in named_buffers.values():
if mp_config.buffer_dtype is not None:
self.assertEqual(v.dtype, mp_config.buffer_dtype)
else:
self.assertEqual(v.dtype, _BUFFER_ORIG_DTYPE)
# state_dict should be in full precision
state_dict = {k: v.clone() for k, v in model.state_dict().items()}
for name, tensor in state_dict.items():
# Parameters and buffers are checkpointed in their
# original dtypes, which may be different.
if name in named_buffers.keys():
self.assertEqual(tensor.dtype, _BUFFER_ORIG_DTYPE)
else:
self.assertEqual(
tensor.dtype, full_precision_param_dtype,
f"{name}: {tensor.dtype} vs {full_precision_param_dtype}"
)
# After state_dict, buffer's dtype should have been restored
# to the mixed precision one.
for buf in model.buffers():
if mp_config.buffer_dtype is not None:
self.assertEqual(buf.dtype, mp_config.buffer_dtype)
else:
self.assertEqual(buf.dtype, _BUFFER_ORIG_DTYPE)
class TestFSDPMixedPrecisionSharded(TestFSDPMixedPrecision):
@property
def world_size(self):
return 2
def _get_subtest_config(self) -> Dict[str, List[Any]]:
"""Returns a subtest configuration that subtests prefetching settings
together."""
return {
"forward_prefetch": [False, True],
"backward_prefetch": [
None,
BackwardPrefetch.BACKWARD_PRE,
BackwardPrefetch.BACKWARD_POST,
]
}
@skip_if_lt_x_gpu(2)
def test_mixed_precision_no_reshard_after_forward(self):
# Note that we don't exercise all possible different configs so as to
# not increase test TTS too much.
mp = default_mp if not nccl_supports_bf16 else mp_diff_buffer_and_reduce
self._run_test_mixed_precision_e2e(
mp_config=mp,
cpu_offload=CPUOffload(offload_params=True),
backward_prefetch=None,
forward_prefetch=False,
full_precision_param_dtype=torch.float64,
sharding_strategy=ShardingStrategy.SHARD_GRAD_OP,
enable_sharded_grad_scaler=False,
)
@skip_if_lt_x_gpu(2)
@parametrize(params, configs, subtest_name)
def test_mixed_precision_e2e_full_shard(
self,
mp_config,
cpu_offload,
full_precision_param_dtype,
enable_sharded_grad_scaler,
):
self.run_subtests(
self._get_subtest_config(),
self._run_test_mixed_precision_e2e,
mp_config=mp_config,
cpu_offload=cpu_offload,
full_precision_param_dtype=full_precision_param_dtype,
sharding_strategy=ShardingStrategy.FULL_SHARD,
enable_sharded_grad_scaler=enable_sharded_grad_scaler,
)
def _test_mixed_precision_embedding_table(self, mp_config):
# Basic test to ensure int inputs are not casted which would break
# modules such as embedding tables.
param_dtype = mp_config.param_dtype or torch.float32
orig_reduce_scatter = dist._reduce_scatter_base
test_reduce_scatter = partial(
self._reduce_scatter_base_validate_mp, orig_reduce_scatter, mp_config,
)
with patch_reduce_scatter(test_reduce_scatter, param_dtype):
# TODO: `test_mp_embedding_reduce()` fails if we do not wrap the
# entire `TransformerWithSharedParams` with a single top-level FSDP
model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
{"mixed_precision": mp_config},
)
fsdp_model = FSDP(model, mixed_precision=mp_config)
optim = torch.optim.SGD(fsdp_model.parameters(), lr=0.1)
for _ in range(6):
inp = fsdp_model.module.get_input(torch.device("cuda"))
# This would fail if we casted integer module inputs such as for
# embedding tables.
output = fsdp_model(*inp)
loss = fsdp_model.module.get_loss(inp, output).cuda()
self.assertEqual(loss.dtype, param_dtype)
fsdp_model.module.run_backward(loss)
optim.step()
@skip_if_lt_x_gpu(2)
def test_mp_embedding_reduce(self):
self._test_mixed_precision_embedding_table(
mp_config=MixedPrecision(reduce_dtype=torch.float16)
)
@skip_if_lt_x_gpu(2)
def test_mp_embedding_only_params_and_bufs(self):
self._test_mixed_precision_embedding_table(
mp_config=MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
)
)
@skip_if_lt_x_gpu(2)
def test_mp_embedding_default(self):
default_mp_config = MixedPrecision(
param_dtype=torch.float16,
buffer_dtype=torch.float16,
reduce_dtype=torch.float16,
)
self._test_mixed_precision_embedding_table(mp_config=default_mp_config)
@skip_if_lt_x_gpu(2)
def test_mp_embedding_params_and_reduce_diff(self):
params_and_reduce_different = MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float32,
buffer_dtype=torch.float16
)
self._test_mixed_precision_embedding_table(mp_config=params_and_reduce_different)
@skip_if_lt_x_gpu(2)
@skipIfNoTorchVision
def test_mixed_precision_resnet(self):
"""
End to end test to ensure mixed precision + auto_wrap works
for ResNet model.
"""
resnet_model = torchvision.models.resnet50().cuda()
resnet_model = nn.SyncBatchNorm.convert_sync_batchnorm(
resnet_model,
process_group=dist.distributed_c10d._get_default_group()
)
n_bn = sum(1 if isinstance(x, _BatchNorm) else 0 for x in resnet_model.modules())
inp = torch.ones(1, 3, 1000, 1000, device='cuda')
mp_config = MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
)
fsdp = FSDP(
resnet_model,
auto_wrap_policy=size_based_auto_wrap_policy,
mixed_precision=mp_config
)
# Batchnorm units should be wrapped individually. Validate this by
# ensuring there are equal no. of FSDP units that are BN as BN units
# in original resnet model.
fsdp_bn = 0
for module in fsdp.fsdp_modules(fsdp):
wrapped_module = module.module
if isinstance(wrapped_module, _BatchNorm):
fsdp_bn += 1
self.assertEqual(fsdp_bn, n_bn)
# Would throw type mismatch issue without mixed precision autowrapping.
loss = fsdp(inp).sum()
loss.backward()
@skip_if_lt_x_gpu(2)
def test_grads_reduced_precision(self):
self._test_grads_reduced_precision()
@skip_if_lt_x_gpu(2)
@parametrize("convert_sync_bn", [True, False])
def test_mp_batchnorm(self, convert_sync_bn):
class BatchNormNet(nn.Module):
def __init__(self, affine=True):
super(BatchNormNet, self).__init__()
self.fc1 = nn.Linear(2, 40, bias=False)
self.bn = nn.BatchNorm1d(4, affine=affine)
self.fc2 = nn.Linear(40, 4, bias=False)
def forward(self, x):
x = torch.reshape(self.fc1(x), (-1, 4, 10))
x = self.bn(x)
x = torch.reshape(x, (-1, 40))
x = self.fc2(x)
return F.softmax(x, dim=1)
def never_wrap_policy(*args, **kwargs):
return False
net = BatchNormNet().cuda()
if convert_sync_bn:
net = nn.SyncBatchNorm.convert_sync_batchnorm(net)
# FSDP detects that mixed precision + batchnorm will cause issues
# and thus wrap batchnorm in a distinct FSDP unit that does not
# use mixed precision.
mp_config = MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
)
with self.assertWarnsRegex(
expected_warning=UserWarning,
expected_regex="batch norm submodules will be wrapped as separate"
):
model = FSDP(
net,
mixed_precision=mp_config,
auto_wrap_policy=never_wrap_policy,
)
bn = model.bn
self.assertTrue(isinstance(bn, FSDP))
# policy should not have wrapped any other submodules
self.assertFalse(isinstance(model.fc1, FSDP))
self.assertFalse(isinstance(model.fc2, FSDP))
no_mixed_precision = MixedPrecision()
self.assertEqual(no_mixed_precision, bn.mixed_precision)
self.assertNotEqual(no_mixed_precision, model.mixed_precision)
inp = torch.randn((1, 2), device='cuda')
# Without FSDP BN mixed precision fix, this would result in
# RuntimeError: Expected counts to have type Half but got Float
# for syncBN
model(inp).sum().backward()
class TestFSDPMixedPrecisionUnsharded(TestFSDPMixedPrecision):
"""
Smaller test suite for unshared param (i.e. world_size == 1) case.
"""
@property
def world_size(self):
return 1
@skip_if_lt_x_gpu(1)
def test_grads_reduced_precision(self):
return self._test_grads_reduced_precision()
@skip_if_lt_x_gpu(1)
def test_mixed_precision_no_reshard_after_forward(self):
# Note that we don't exercise all possible different configs so as to
# not increase test TTS too much.
mp = default_mp if not nccl_supports_bf16 else mp_diff_buffer_and_reduce
self._run_test_mixed_precision_e2e(
mp_config=mp,
cpu_offload=CPUOffload(offload_params=True),
backward_prefetch=None,
forward_prefetch=False,
full_precision_param_dtype=torch.float64,
sharding_strategy=ShardingStrategy.SHARD_GRAD_OP,
enable_sharded_grad_scaler=False,
)
@skip_if_lt_x_gpu(1)
def test_mixed_precision_e2e_full_shard(self):
mp = default_mp if not nccl_supports_bf16 else mp_diff_buffer_and_reduce
self._run_test_mixed_precision_e2e(
mp_config=mp,
cpu_offload=CPUOffload(offload_params=True),
backward_prefetch=None,
forward_prefetch=False,
full_precision_param_dtype=torch.float64,
sharding_strategy=ShardingStrategy.FULL_SHARD,
enable_sharded_grad_scaler=False,
)
instantiate_parametrized_tests(TestFSDPMixedPrecisionSharded)
if __name__ == "__main__":
run_tests()
|