1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
|
# Owner(s): ["oncall: distributed"]
import bisect
import sys
from enum import Enum, auto
from typing import Any, Dict, List, Tuple, Type
import torch
from torch import distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_PREFIX, apply_activation_checkpointing
)
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import (
OptimStateKeyType,
StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
TransformerWithSharedParams,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize,
run_tests,
)
STATE_DICT_TYPE = [
StateDictType.FULL_STATE_DICT, StateDictType.SHARDED_STATE_DICT
]
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class _OSDCommMethod(Enum):
"""Method for communicating the optimizer state dict for internal tests."""
BROADCAST_OBJECT_LIST = auto()
SCATTER_FULL_OSD = auto()
FLATTEN_SHARDED_OSD = auto()
class _ModelClass(Enum):
"""Different model type to test."""
NESTED = auto()
TRANSFORMER = auto()
class Bias(torch.nn.Module):
"""This module applies a 1D additive bias with dimension ``dim``."""
def __init__(self, dim: int) -> None:
super().__init__()
assert dim > 0
torch.manual_seed(0)
self.bias = torch.nn.Parameter(torch.randn((dim,)))
def forward(self, x):
return x + self.bias
class BlockA(torch.nn.Module):
"""
Used to define interesting nested structure for FSDP wrapping.
BlockA
Bias0
bias
weight
Bias1
bias
"""
def __init__(self, in_dim: int, out_dim: int) -> None:
super().__init__()
assert all(v > 0 for v in (in_dim, out_dim))
torch.manual_seed(0)
self.bias_module0 = Bias(out_dim)
self.weight = torch.nn.Parameter(torch.randn((in_dim, out_dim)))
self.bias_module1 = Bias(out_dim)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = x @ self.weight
x = self.bias_module0(x)
x = self.relu(x) # ensure biases have different gradients
x = self.bias_module1(x)
return x
class BlockB(torch.nn.Module):
"""
Used to define interesting nested structure for FSDP wrapping.
BlockB
weight
Bias
bias
Bias
bias
"""
def __init__(self, in_dim: int, out_dim: int) -> None:
super().__init__()
assert all(v > 0 for v in (in_dim, out_dim))
torch.manual_seed(0)
self.weight = torch.nn.Parameter(torch.randn((in_dim, out_dim)))
self.bias_module0 = Bias(out_dim)
self.bias_module1 = Bias(out_dim)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = x @ self.weight
x = self.bias_module0(x)
x = self.relu(x) # ensure biases have different gradients
x = self.bias_module1(x)
return x
class NestedModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.block0 = BlockB(5, 7)
self.block1 = BlockB(7, 7)
self.bias = torch.nn.Parameter(torch.randn((5,)))
self.block2 = torch.nn.Sequential(
BlockA(7, 9),
BlockA(9, 9),
BlockB(9, 5),
)
self.relu = torch.nn.ReLU()
def forward(self, x) -> torch.Tensor:
x = self.relu(self.block0(x))
x = self.relu(self.block1(x))
x = self.relu(self.block2(x))
x = x + self.bias
return x
def get_input(self, device):
BATCH_SIZE = 8
return (torch.randn((BATCH_SIZE, 5)).to(device),)
def get_loss(self, inp, output):
return output.sum()
def run_backward(self, loss):
loss.backward()
@staticmethod
def wrap(model, group=None, ignore_modules: bool = False) -> torch.nn.Module:
# Flatten Bias0; then flatten weight and Bias1 together into `block1`
model.block1.bias_module0 = FSDP(
model.block1.bias_module0, process_group=group,
)
model.block1 = FSDP(model.block1, process_group=group)
# Flatten Bias0; flatten Bias1; then flatten weight into `block2[1]`
model.block2[1].bias_module0 = FSDP(
model.block2[1].bias_module0, process_group=group,
)
model.block2[1].bias_module1 = FSDP(
model.block2[1].bias_module1, process_group=group,
)
model.block2[1] = FSDP(model.block2[1], process_group=group)
# Flatten weight, Bias, bias into `block2[2]`
ignored_modules = [model.block2[2].bias_module0] if ignore_modules else None
model.block2[2] = FSDP(
model.block2[2], process_group=group, ignored_modules=ignored_modules,
)
return model
@staticmethod
def wrap_alt(model, group=None) -> torch.nn.Module:
model.block0.bias_module0 = FSDP(
model.block0.bias_module0, process_group=group,
)
model.block0 = FSDP(model.block0, process_group=group)
return model
@staticmethod
def wrap_with_unmanaged_params(
model,
add_to_fsdp_module: bool,
group=None,
) -> Tuple[torch.nn.Module, List[torch.nn.Parameter]]:
"""Registers unmanaged parameters before wrapping with :meth:`wrap`."""
device = next(model.parameters()).device
unmanaged_param = torch.nn.Parameter(torch.randn(5, 5, device=device))
# Either register the parameter to a module to be wrapped with FSDP
# (`model.block2[2]`) or a module not to be wrapped with FSDP (`model`)
register_module = model.block2[2] if add_to_fsdp_module else model
register_module.register_parameter(
"unmanaged_param", unmanaged_param,
)
# For simplicity, we only add a single unmanaged parameter, but should
# be easy to generalize if needed
return NestedModel.wrap(model, group), [unmanaged_param]
@staticmethod
def add_unmanaged_param_entry(osd, unmanaged_param, step) -> None:
"""Adds an entry for the unmanaged parameter ``unmanaged_param``
assuming Adam optimizer and a single parameter group."""
# The unmanaged parameters should be passed to this method in
# `model.parameters()` order since their parameter IDs will be assigned
# in order of the skipped IDs
# Assign a parameter ID to the unmanaged parameter
unmanaged_param_id = -1
param_ids = osd["param_groups"][0]["params"]
for i in range(1, len(param_ids)):
diff = param_ids[i] - param_ids[i - 1]
if diff != 1:
assert diff > 1, f"Invalid IDs: {param_ids[i - 1]} {param_ids[i]}"
unmanaged_param_id = param_ids[i - 1] + 1
break
if unmanaged_param_id == -1:
unmanaged_param_id = len(param_ids) # last ID skipped
assert unmanaged_param_id >= 0, "One parameter ID should be skipped"
# Add a state entry for the unmanaged parameter
state_device = next(iter(next(iter(osd["state"].values())).values())).device
osd["state"][unmanaged_param_id] = {
"step": torch.tensor(float(step), device=state_device),
"exp_avg": torch.randn(unmanaged_param.shape, device=state_device),
"exp_avg_sq": torch.randn(unmanaged_param.shape, device=state_device),
}
# Insert the ID into the parameter group in order
bisect.insort(osd["param_groups"][0]["params"], unmanaged_param_id)
# NOTE: We exclude `self.bias` from either parameter group to test the
# case where the optimizer input does not include all model parameters
def param_group0(self) -> List[torch.nn.Parameter]:
# Use `block1`'s parameters for the first parameter group to deviate
# from the `model.parameters()` order
return list(self.block1.parameters())
def param_group1(self) -> List[torch.nn.Parameter]:
# Deviate from the `model.parameters()` order further by rearranging
# `block2`'s parameters to be before `block0`'s parameters
return list(self.block2.parameters()) + \
list(self.block0.parameters())
class TestFSDPOptimState(FSDPTest):
def __init__(self, *args, **kwargs):
super(TestFSDPOptimState, self).__init__(*args, **kwargs)
self._model_class = {
_ModelClass.NESTED: self._init_nested_model,
_ModelClass.TRANSFORMER: self._init_transformer_model,
}
def _init_nested_model(
self,
wrap: bool,
wrap_alt: bool = False, # ignored if `wrap=False`
device: torch.device = torch.device("cuda"),
group=None,
optim_class: Type[torch.optim.Optimizer] = torch.optim.Adam,
use_multiple_param_groups: bool = False,
use_diff_optim_inputs: bool = False,
):
model = NestedModel().to(device)
if wrap:
model = NestedModel.wrap_alt(model, group) if wrap_alt \
else NestedModel.wrap(model, group)
if not use_multiple_param_groups:
optim_input = list(model.parameters())
else:
optim_input = [
{"params": model.param_group0()},
{"params": model.param_group1(), "weight_decay": 0.9}
]
# Use a reversed parameter order for the optimizer input on odd ranks
if use_diff_optim_inputs and self.rank % 2 == 1:
if isinstance(optim_input[0], dict):
for param_group in optim_input:
param_group["params"] = list(reversed(param_group["params"]))
else:
optim_input = list(reversed(optim_input))
optim = optim_class(optim_input, lr=0.01)
return model, optim, optim_input
def _init_transformer_model(
self,
wrap: bool,
device: torch.device = torch.device("cuda"),
group=None,
optim_class: Type[torch.optim.Optimizer] = torch.optim.Adam,
use_multiple_param_groups: bool = False,
use_diff_optim_inputs: bool = False,
):
if use_multiple_param_groups or use_diff_optim_inputs:
# Keep these as arguments for parity with `_init_nested_model()`;
# these settings are not implemented since the transformer is
# wrapped with FSDP at the top-level, which means that there is
# only a single flattened parameter, making these booleans vacuous
raise NotImplementedError()
if group is None:
group = dist.distributed_c10d._get_default_group()
model = TransformerWithSharedParams.init(
group,
FSDPInitMode.RECURSIVE if wrap else FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
deterministic=True,
)
optim = optim_class(model.parameters(), lr=0.01)
return model, optim, None
def _step_model(
self,
model: torch.nn.Module,
optim: torch.optim.Optimizer,
device: torch.device = torch.device("cuda"),
num_iters: int = 1,
) -> List[float]:
"""Performs a forward pass, backward pass, and optimizer step
``num_iters``-many times, and returns the per-iteration losses."""
torch.manual_seed(0) # set seed for determinism
losses = []
module = model.module if hasattr(model, "module") else model
for _ in range(num_iters):
optim.zero_grad()
inp = module.get_input(device)
output = model(*inp)
loss = module.get_loss(inp, output).to(device)
losses.append(loss.item())
module.run_backward(loss)
optim.step()
return losses
def _broadcast_full_osd(self, full_osd: Dict[str, Any], group=None):
"""Broadcasts the full optimizer state dict in place of using
``torch.save()`` and ``torch.load()`` so that all ranks can have it."""
obj_list = [full_osd]
dist.broadcast_object_list(
obj_list, src=0, group=group,
)
full_osd = obj_list[0]
return full_osd
def _are_equal_states(
self,
state1: Dict[str, Any],
state2: Dict[str, Any],
) -> bool:
"""Checks if ``state1`` and ``state2`` contain the same mappings."""
if set(state1.keys()) != set(state2.keys()):
return False
for state_name, value1 in state1.items():
value2 = state2[state_name]
if type(value1) != type(value2):
return False
if torch.is_tensor(value1): # tensor state
assert torch.is_tensor(value2)
# Check the values on CPU to be device-agnostic
value1 = value1.cpu()
value2 = value2.cpu()
if value1.shape != value2.shape or \
not torch.all(torch.isclose(value1, value2)):
return False
else: # non-tensor state
if value1 != value2:
return False
return True
def _check_same_state(
self,
fsdp_osd,
ref_osd,
check_same_param_keys: bool,
):
"""Checks that ``full_osd`` and ``ref_osd`` have the same "state" part.
If ``check_same_param_keys=True``, then checks that the parameter keys
match (e.g. when both should be parameter names), and does not check
the parameter keys otherwise."""
assert "state" in ref_osd
self.assertTrue("state" in fsdp_osd)
ref_osd_state = ref_osd["state"]
fsdp_osd_state = {
k: _gather_state_dict(v) for k, v in fsdp_osd["state"].items()
}
if check_same_param_keys:
# Check parameter keys are the same first for earlier erroring
ref_osd_param_ids = set(ref_osd_state.keys())
fsdp_osd_param_ids = set(fsdp_osd_state.keys())
self.assertTrue(ref_osd_param_ids == fsdp_osd_param_ids)
# Check state values are the same
for param_id, param_state in fsdp_osd_state.items():
for state_name, value in param_state.items():
ref_value = ref_osd_state[param_id][state_name]
self.assertEqual(value, ref_value)
return
# Otherwise, only require the parameter keys to be isomorphic (e.g.
# between IDs and names)
ref_osd_states = list(ref_osd_state.values())
fsdp_osd_states = list(fsdp_osd_state.values())
self.assertEqual(len(ref_osd_states), len(fsdp_osd_states))
# Use brute-force quadratic-time comparison since it is hard to
# hash a tensor by value instead of by object
for fsdp_osd_state in fsdp_osd_states:
# Check for at least one match (may be > 1 in toy edge cases, e.g.
# multiple biases); nonetheless, each having >= 1 match and the two
# lists having equal length imply that the list contents are equal
self.assertTrue(any(
self._are_equal_states(fsdp_osd_state, ref_osd_state)
for ref_osd_state in ref_osd_states
))
def _check_same_param_groups(
self,
full_osd,
ref_osd,
check_same_param_keys: bool,
):
"""Checks that ``full_osd`` and ``ref_osd`` have the same
"param_groups" part. If ``check_same_param_keys=True`, then checks that
the parameter keys match (e.g. when both should be parameter names),
and does not check the parameter keys otherwise."""
assert "param_groups" in ref_osd
self.assertTrue("param_groups" in full_osd)
ref_osd_param_groups = ref_osd["param_groups"]
full_osd_param_groups = full_osd["param_groups"]
self.assertTrue(len(full_osd_param_groups), len(ref_osd_param_groups))
for full_osd_pg, ref_osd_pg in zip(
full_osd_param_groups, ref_osd_param_groups,
):
self.assertEqual(
set(full_osd_pg.keys()), set(ref_osd_pg.keys()),
)
for name, full_osd_value in full_osd_pg.items():
if name == "params" and not check_same_param_keys:
continue
self.assertEqual(full_osd_value, ref_osd_pg[name])
def _check_state_device(self, osd: Dict[str, Any], on_gpu: bool):
"""Checks that all tensors in ``osd["state"]`` are on GPU if
``on_gpu=True`` and on CPU if ``on_gpu=False``."""
for param_state in osd["state"].values():
for value in param_state.values():
if torch.is_tensor(value) and value.dim() > 0:
if on_gpu:
self.assertTrue(value.is_cuda)
else:
self.assertFalse(value.is_cuda)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", STATE_DICT_TYPE)
@parametrize("use_multiple_param_groups", [False, True])
@parametrize("rank0_only", [False, True])
@parametrize("use_diff_optim_inputs", [False, True])
def test_optim_state_dict_nested(
self,
state_dict_type: StateDictType,
use_multiple_param_groups: bool,
rank0_only: bool,
use_diff_optim_inputs: bool,
) -> None:
"""
Tests :meth:`full_optim_state_dict` and `sharded_optim_state_dict`
by comparing the returned dict for an FSDP-wrapped model with that of
an equivalent non-wrapped model.
The test checks the equivalence excluding the parameter keys since the
FSDP and normal optimizer state dicts key by names and IDs,
respectively. This means that the test can pass even if parameter keys
are incorrectly mapped to values. Their correct mapping is tested in
other tests that exercise the save/load workflow.
"""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_optim_state_dict_nested,
state_dict_type=state_dict_type,
use_multiple_param_groups=use_multiple_param_groups,
rank0_only=rank0_only,
use_diff_optim_inputs=use_diff_optim_inputs,
)
def _test_optim_state_dict_nested(
self,
state_dict_type: StateDictType,
use_multiple_param_groups: bool,
rank0_only: bool,
use_diff_optim_inputs: bool,
use_optim_input: bool,
) -> None:
if rank0_only and state_dict_type == StateDictType.SHARDED_STATE_DICT:
return # not supported
NUM_ITERS = 3
model1, optim1, optim_input = self._init_nested_model(
wrap=True, use_multiple_param_groups=use_multiple_param_groups,
use_diff_optim_inputs=use_diff_optim_inputs,
)
losses1 = self._step_model(model1, optim1, num_iters=NUM_ITERS)
if state_dict_type == StateDictType.FULL_STATE_DICT:
if use_optim_input:
fsdp_osd = FSDP.full_optim_state_dict(
model1, optim1, optim_input, rank0_only=rank0_only,
)
else:
fsdp_osd = FSDP.full_optim_state_dict(
model1, optim1, rank0_only=rank0_only,
)
else:
if use_optim_input:
fsdp_osd = FSDP.sharded_optim_state_dict(model1, optim1, optim_input)
else:
fsdp_osd = FSDP.sharded_optim_state_dict(model1, optim1)
# Non-target ranks get an empty state dict
if rank0_only and self.rank != 0:
self.assertEqual(len(fsdp_osd), 0)
return
model2, optim2, _ = self._init_nested_model(
wrap=False, use_multiple_param_groups=use_multiple_param_groups,
use_diff_optim_inputs=use_diff_optim_inputs,
)
losses2 = self._step_model(model2, optim2, num_iters=NUM_ITERS)
ref_osd = optim2.state_dict()
# Check the losses to eliminate model drift as a source of error
for i, (l1, l2) in enumerate(zip(losses1, losses2)):
assert l1 == l2, f"Losses differ on iter {i}: {l1:.5f} {l2:.5f}"
# Do not check the parameter keys since the full/sharded optimizer state
# dict uses parameter names, while the non-wrapped equivalent uses
# parameter IDs
check_same_param_keys = False
self._check_same_param_groups(
fsdp_osd, ref_osd, check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
fsdp_osd, ref_osd, check_same_param_keys=check_same_param_keys,
)
@skip_if_lt_x_gpu(2)
def test_full_optim_state_dict_keys(self):
"""Tests that the parameter keys returned by
:meth:`full_optim_state_dict` match those of :meth:`state_dict` with
full ``state_dict_type`` for a non-FSDP-root model with nested FSDP
instances and ignored modules."""
device = torch.device("cuda")
model = NestedModel().to(device)
wrapped_model = NestedModel.wrap(model, ignore_modules=True)
# Add checkpointing to ensure optim_state_dict and state_dict strip out
# checkpointing prefixes.
apply_activation_checkpointing(
model,
check_fn=lambda module: isinstance(module, torch.nn.Sequential)
)
optim = torch.optim.Adam(wrapped_model.parameters(), lr=1e-3)
self._step_model(model, optim, device)
optim_state_dict = FSDP.full_optim_state_dict(wrapped_model, optim, rank0_only=False)
with FSDP.state_dict_type(wrapped_model, StateDictType.FULL_STATE_DICT):
state_dict = wrapped_model.state_dict()
self.assertEqual(optim_state_dict["state"].keys(), state_dict.keys())
# Check that checkpointing prefix was indeed stripped.
for key in optim_state_dict["state"]:
self.assertNotIn(_CHECKPOINT_PREFIX, key)
@skip_if_lt_x_gpu(2)
def test_full_optim_state_dict_nested_invalid(self):
"""Tests that :meth:`full_optim_state_dict` raises an error when
nonzero ranks are missing the optimizer state for parameters on rank
0."""
device = torch.device("cuda")
model = NestedModel.wrap(NestedModel().to(device), None)
optim_input = list(model.parameters())
if self.rank != 0:
# Exclude a parameter so that nonzero ranks are missing state
optim_input = optim_input[:-1]
optim = torch.optim.Adam(optim_input, lr=1e-3)
self._step_model(model, optim, num_iters=3)
error_regex = (
"FSDP currently requires each rank to have at least the "
"optimizer states needed by rank 0's optimizer but some ranks "
"are missing some of those states"
)
with self.assertRaisesRegex(RuntimeError, error_regex):
FSDP.full_optim_state_dict(model, optim)
@skip_if_lt_x_gpu(2)
@parametrize("use_multiple_param_groups", [False, True])
@parametrize("wrap_alt", [False, True])
@parametrize("use_diff_optim_inputs", [False, True])
def test_shard_full_optim_state_dict_nested(
self,
use_multiple_param_groups: bool,
wrap_alt: bool,
use_diff_optim_inputs: bool,
):
"""Tests :meth:`shard_full_optim_state_dict` for a non-FSDP-root model
with nested FSDP instances."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.NESTED,
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=False,
osd_comm_method=_OSDCommMethod.BROADCAST_OBJECT_LIST,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
)
@skip_if_lt_x_gpu(2)
def test_shard_full_optim_state_dict_nested_halve_world_size(self):
"""Tests :meth:`shard_full_optim_state_dict` for a non-FSDP-root model
with nested FSDP instances when loading into a new process group with
halved world size."""
# To save CI costs, we test with the "harder" settings:
use_multiple_param_groups = True
use_diff_optim_inputs = True
wrap_alt = True
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.NESTED,
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=True,
osd_comm_method=_OSDCommMethod.BROADCAST_OBJECT_LIST,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
)
@skip_if_lt_x_gpu(2)
def test_shard_full_optim_state_dict_transformer(self) -> None:
"""Tests :meth:`shard_full_optim_state_dict` for an FSDP-root
transformer model with shared parameters."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.TRANSFORMER,
use_multiple_param_groups=False,
halve_world_size=True,
osd_comm_method=_OSDCommMethod.BROADCAST_OBJECT_LIST,
use_diff_optim_inputs=False,
)
@skip_if_lt_x_gpu(2)
@parametrize("use_multiple_param_groups", [False, True])
@parametrize("wrap_alt", [False, True])
@parametrize("use_diff_optim_inputs", [False, True])
def test_scatter_full_optim_state_dict_nested(
self,
use_multiple_param_groups: bool,
wrap_alt: bool,
use_diff_optim_inputs: bool,
):
"""Tests :meth:`scatter_full_optim_state_dict` for a non-FSDP-root
model with nested FSDP instances."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.NESTED,
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=False,
osd_comm_method=_OSDCommMethod.SCATTER_FULL_OSD,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
)
@skip_if_lt_x_gpu(2)
def test_scatter_full_optim_state_dict_nested_halve_world_size(self):
"""Tests :meth:`scatter_full_optim_state_dict` for a non-FSDP-root
model with nested FSDP instances when loading into a new process group
with halved world size."""
# To save CI costs, we test with the "harder" settings:
use_multiple_param_groups = True
use_diff_optim_inputs = True
wrap_alt = True
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.NESTED,
use_multiple_param_groups=use_multiple_param_groups,
halve_world_size=True,
osd_comm_method=_OSDCommMethod.SCATTER_FULL_OSD,
use_diff_optim_inputs=use_diff_optim_inputs,
wrap_alt=wrap_alt,
)
@skip_if_lt_x_gpu(2)
def test_scatter_full_optim_state_dict_transformer(self) -> None:
"""Tests :meth:`scatter_full_optim_state_dict` for an FSDP-root
transformer model with shared parameters."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
model_class=_ModelClass.TRANSFORMER,
use_multiple_param_groups=False,
halve_world_size=True,
osd_comm_method=_OSDCommMethod.SCATTER_FULL_OSD,
use_diff_optim_inputs=False,
)
@skip_if_lt_x_gpu(2)
def test_flatten_sharded_optim_state_dict_nested(self):
"""Tests :meth:`flatten_sharded_optim_state_dict` for an FSDP-root
nested model."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
_ModelClass.NESTED,
use_multiple_param_groups=False,
halve_world_size=False,
osd_comm_method=_OSDCommMethod.FLATTEN_SHARDED_OSD,
use_diff_optim_inputs=False,
wrap_alt=True,
)
@skip_if_lt_x_gpu(2)
def test_flatten_sharded_optim_state_dict_transformer(self) -> None:
"""Tests :meth:`flatten_sharded_optim_state_dict` for an FSDP-root
transformer model."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_load_optim_state,
_ModelClass.TRANSFORMER,
use_multiple_param_groups=False,
halve_world_size=False,
osd_comm_method=_OSDCommMethod.FLATTEN_SHARDED_OSD,
use_diff_optim_inputs=False,
)
def _test_load_optim_state(
self,
model_class: _ModelClass,
use_multiple_param_groups: bool,
halve_world_size: bool,
osd_comm_method: _OSDCommMethod,
use_diff_optim_inputs: bool,
use_optim_input: bool,
**new_model_kwargs,
):
"""
(1) Runs a model with full world size for K iterations to generate a
full/sharded optimizer state dict;
(2) initializes a model with halved world size and possibly different
FSDP wrapping scheme (based on ``new_model_kwargs``);
(3) loads the full/sharded optimizer state dict from (1) according to the
halved-world-size model;
(4) runs the halved-world-size model for K iterations; and
(5) checks that the sharded optimizer state dict from (3) matches the
halved-world-size model's local optimizer state dict, meaning that the
former could have equivalently been loaded into the local optimizer.
"""
NUM_ITERS = 3
initializer = self._model_class[model_class]
osd_method = (
FSDP.sharded_optim_state_dict
if osd_comm_method == _OSDCommMethod.FLATTEN_SHARDED_OSD
else FSDP.full_optim_state_dict
)
# First, run a wrapped model with full world size for a few iterations
model1, optim1, optim_input1 = initializer(
wrap=True, use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model1, optim1, num_iters=NUM_ITERS)
fsdp_osd1 = (
osd_method(model1, optim1, optim_input1) if use_optim_input
else osd_method(model1, optim1)
)
if halve_world_size:
# Create a new process group with halved world size
new_group_ranks = [r for r in range(self.world_size) if r % 2 == 0]
new_group = dist.new_group(ranks=new_group_ranks)
if self.rank not in new_group_ranks:
return
else:
# Continue using the same group and hence world size
new_group = dist.distributed_c10d._get_default_group()
# Second, run a wrapped model with (possibly) halved world size and
# (possibly) differing `optim_input` across ranks
model2, optim2, optim_input2 = initializer(
wrap=True, group=new_group,
use_multiple_param_groups=use_multiple_param_groups,
use_diff_optim_inputs=use_diff_optim_inputs,
**new_model_kwargs, # specify `wrap_alt` to change wrapping
)
self._step_model(model2, optim2, num_iters=NUM_ITERS)
fsdp_osd2 = (
osd_method(model2, optim2, optim_input2, group=new_group)
if use_optim_input
else osd_method(model2, optim2, group=new_group)
)
# Compute two sharded optim state dicts: (1) for the first model
# according to the second model and (2) for the second model according
# to the second model
if osd_comm_method == _OSDCommMethod.BROADCAST_OBJECT_LIST:
fsdp_osd1 = self._broadcast_full_osd(fsdp_osd1, group=new_group)
sharded_osd1 = (
FSDP.shard_full_optim_state_dict(fsdp_osd1, model2, optim_input=optim_input2)
if use_optim_input
else FSDP.shard_full_optim_state_dict(fsdp_osd1, model2, optim=optim2)
)
fsdp_osd2 = self._broadcast_full_osd(fsdp_osd2, group=new_group)
sharded_osd2 = (
FSDP.shard_full_optim_state_dict(fsdp_osd2, model2, optim_input=optim_input2)
if use_optim_input
else FSDP.shard_full_optim_state_dict(fsdp_osd2, model2, optim=optim2)
)
elif osd_comm_method == _OSDCommMethod.SCATTER_FULL_OSD:
sharded_osd1 = (
FSDP.scatter_full_optim_state_dict(
fsdp_osd1 if self.rank == 0 else None,
model2,
optim_input=optim_input2,
group=new_group,
) if use_optim_input
else FSDP.scatter_full_optim_state_dict(
fsdp_osd1 if self.rank == 0 else None,
model2,
optim=optim2,
group=new_group,
)
)
sharded_osd2 = (
FSDP.scatter_full_optim_state_dict(
fsdp_osd2 if self.rank == 0 else None,
model2,
optim_input=optim_input2,
group=new_group,
) if use_optim_input
else FSDP.scatter_full_optim_state_dict(
fsdp_osd2 if self.rank == 0 else None,
model2,
optim=optim2,
group=new_group,
)
)
self._check_state_device(sharded_osd1, on_gpu=True)
self._check_state_device(sharded_osd2, on_gpu=True)
elif osd_comm_method == _OSDCommMethod.FLATTEN_SHARDED_OSD:
sharded_osd1 = (
FSDP.flatten_sharded_optim_state_dict(
fsdp_osd1, model2, optim_input=optim_input2,
) if use_optim_input
else FSDP.flatten_sharded_optim_state_dict(
fsdp_osd1, model2, optim=optim2,
)
)
sharded_osd2 = (
FSDP.flatten_sharded_optim_state_dict(
fsdp_osd2, model2, optim_input=optim_input2,
) if use_optim_input
else FSDP.flatten_sharded_optim_state_dict(
fsdp_osd2, model2, optim=optim2,
)
)
# As a sanity check, check that sharding the second model's full/sharded
# optimizer state dict according to itself is equivalent to its local
# optimizer's state dict
local_osd2 = optim2.state_dict()
check_same_param_keys = True # should all have matching parameter IDs
self._check_same_param_groups(
sharded_osd2, local_osd2,
check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
sharded_osd2, local_osd2,
check_same_param_keys=check_same_param_keys,
)
# Check that sharding the first model's full/sharded optimizer state dict
# according to the second model is equivalent to the second model's
# local optimizer state dict
self._check_same_param_groups(
sharded_osd1, local_osd2,
check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
sharded_osd1, local_osd2,
check_same_param_keys=check_same_param_keys,
)
# As a sanity check, check that we can load and run a few iterations
if osd_comm_method != _OSDCommMethod.FLATTEN_SHARDED_OSD:
optim2.load_state_dict(sharded_osd1)
self._step_model(model2, optim2, num_iters=NUM_ITERS)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", STATE_DICT_TYPE)
@parametrize("add_to_fsdp_module", [False, True])
def test_shard_full_optim_state_dict_unmanaged_params(
self,
state_dict_type: StateDictType,
add_to_fsdp_module: bool,
):
"""
Tests :meth:`shard_full_optim_state_dict` when there are unmanaged
parameters.
- If ``add_to_fsdp_module=True``, then the unmanaged parameters are
added to a module to be wrapped with FSDP, in which case there should
be an error since we require that all unflattened parameter
comprising a flattened parameter have the same scalar state (e.g.
Adam "step") but the added parameter is missing its entry.
- If ``add_to_fsdp_module=False``, then the unmanaged parameters are
added to a module not to be wrapped with FSDP, in which case there
should be no error (emulating model parallel use cases where some
parameters may be managed externally to FSDP).
We do not separately test unmanaged parameters for
:meth:`scatter_full_optim_state_dict` and `flatten_sharded_optim_state_dict`
to save CI cost since it call into the same subroutine
:meth:`_flatten_optim_state_dict`.
"""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_shard_full_optim_state_dict_unmanaged_params,
state_dict_type=state_dict_type,
add_to_fsdp_module=add_to_fsdp_module,
)
def _test_shard_full_optim_state_dict_unmanaged_params(
self,
state_dict_type: StateDictType,
add_to_fsdp_module: bool,
use_optim_input: bool,
):
NUM_ITERS = 1
# Create a normal wrapped model
model, optim, optim_input = self._init_nested_model(wrap=True)
self._step_model(model, optim, num_iters=NUM_ITERS)
if state_dict_type == StateDictType.FULL_STATE_DICT:
fsdp_osd = (
FSDP.full_optim_state_dict(model, optim, optim_input, rank0_only=False)
if use_optim_input
else FSDP.full_optim_state_dict(model, optim, rank0_only=False)
) # save on all ranks to avoid having to broadcast from rank 0
else:
fsdp_osd = (
FSDP.sharded_optim_state_dict(model, optim, optim_input)
if use_optim_input
else FSDP.sharded_optim_state_dict(model, optim)
)
# Create a new model with the same structure but additional unmanaged
# parameters, representing the model for which we want to load
device = torch.device("cuda")
model = NestedModel().to(device)
model, unmanaged_params = NestedModel.wrap_with_unmanaged_params(
model, add_to_fsdp_module,
)
optim_input = list(model.parameters())
optim = torch.optim.Adam(optim_input, lr=1e-3)
if add_to_fsdp_module:
# If we add the unmanaged parameters to a module wrapped with FSDP,
# then the flattened parameter will be comprised of some
# unflattened parameters with zero-dimensional tensor state (i.e.
# Adam "step") and others without (i.e. the unmanaged parameters),
# which triggers an error that we have to ensure correctness
error_prefix = "^(All unflattened parameters comprising a " \
"single flattened parameter must have scalar state with the " \
"same value and dtype)"
with self.assertRaisesRegex(ValueError, error_prefix):
if state_dict_type == StateDictType.FULL_STATE_DICT:
(
FSDP.shard_full_optim_state_dict(fsdp_osd, model, optim_input=optim_input)
if use_optim_input
else FSDP.shard_full_optim_state_dict(fsdp_osd, model, optim=optim)
)
else:
(
FSDP.flatten_sharded_optim_state_dict(fsdp_osd, model, optim_input=optim_input)
if use_optim_input
else FSDP.flatten_sharded_optim_state_dict(fsdp_osd, model, optim=optim)
)
else:
# If we add the unmanaged parameters to a module not wrapped with
# FSDP, then we simply ignore them without erroring to enable
# model parallelism use cases, where some parameters are managed
# externally to FSDP
if state_dict_type == StateDictType.FULL_STATE_DICT:
flattened_osd = (
FSDP.shard_full_optim_state_dict(fsdp_osd, model, optim_input=optim_input)
if use_optim_input
else FSDP.shard_full_optim_state_dict(fsdp_osd, model, optim=optim)
)
else:
flattened_osd = (
FSDP.flatten_sharded_optim_state_dict(fsdp_osd, model, optim_input=optim_input)
if use_optim_input
else FSDP.flatten_sharded_optim_state_dict(fsdp_osd, model, optim=optim)
)
# Add entries for the unmanaged parameters to be able to load
for unmanaged_param in unmanaged_params:
NestedModel.add_unmanaged_param_entry(
flattened_osd, unmanaged_param, NUM_ITERS,
)
# Check that we can load the optimizer state dict
optim.load_state_dict(flattened_osd)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", STATE_DICT_TYPE)
@parametrize("use_multiple_param_groups", [False, True])
def test_rekey_optim_state_dict_to_ids(
self,
state_dict_type: StateDictType,
use_multiple_param_groups: bool,
):
"""Tests :meth:`rekey_optim_state_dict` with the new keys being
parameter IDs by checking that a wrapped model (i.e. with FSDP modules)
can rekey its optimizer state dict to match that of an equivalent
non-wrapped model (i.e. without FSDP modules)."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_rekey_optim_state_dict_to_ids,
state_dict_type=state_dict_type,
use_multiple_param_groups=use_multiple_param_groups,
)
@skip_if_lt_x_gpu(2)
def _test_rekey_optim_state_dict_to_ids(
self,
state_dict_type: StateDictType,
use_multiple_param_groups: bool,
use_optim_input: bool,
):
NUM_ITERS = 3
# Run a wrapped model for a few iterations
model1, optim1, optim_input1 = self._init_nested_model(
wrap=True, use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model1, optim1, num_iters=NUM_ITERS)
if state_dict_type == StateDictType.FULL_STATE_DICT:
fsdp_osd = (
FSDP.full_optim_state_dict(model1, optim1, optim_input1)
if use_optim_input
else FSDP.full_optim_state_dict(model1, optim1)
)
# Broadcast instead of `torch.save()`/`torch.load()` so that all ranks
# have the full state dict
fsdp_osd = self._broadcast_full_osd(fsdp_osd)
else:
fsdp_osd = (
FSDP.sharded_optim_state_dict(model1, optim1, optim_input1)
if use_optim_input
else FSDP.sharded_optim_state_dict(model1, optim1)
)
# Run a non-wrapped model for a few iterations
model2, optim2, optim_input2 = self._init_nested_model(
wrap=False, use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model2, optim2, num_iters=NUM_ITERS)
# Re-key the wrapped model's optimizer state dict using parameter IDs
# according to the non-wrapped model
rekeyed_osd = (
FSDP.rekey_optim_state_dict(
fsdp_osd, OptimStateKeyType.PARAM_ID, model2, optim_input=optim_input2,
)
if use_optim_input
else FSDP.rekey_optim_state_dict(
fsdp_osd, OptimStateKeyType.PARAM_ID, model2, optim=optim2,
)
)
# Check that the re-keyed dict and actual dict are the same
osd = optim2.state_dict()
check_same_param_keys = True
self._check_same_param_groups(
rekeyed_osd, osd, check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
rekeyed_osd, osd, check_same_param_keys=check_same_param_keys,
)
# As a sanity check, check that we can load and run a few iterations
if state_dict_type != StateDictType.SHARDED_STATE_DICT:
optim2.load_state_dict(rekeyed_osd)
self._step_model(model2, optim2, num_iters=NUM_ITERS)
@skip_if_lt_x_gpu(2)
def test_rekey_optim_state_dict_to_names(self):
"""Tests :meth:`rekey_optim_state_dict` with the new keys being
parameter names by checking that a non-wrapped model (i.e. without FSDP
modules) can rekey its optimizer state dict to match the expected
output of :meth:`full_optim_state_dict`, hence be sharded using
:meth:`shard_full_optim_state_dict`, and finally match the per-rank
optimizer state dict of a wrapped model (i.e. with FSDP modules)."""
self.run_subtests(
{"use_optim_input": [False, True]},
self._test_rekey_optim_state_dict_to_names,
use_multiple_param_groups=False,
)
def _test_rekey_optim_state_dict_to_names(
self,
use_multiple_param_groups: bool,
use_optim_input: bool,
):
NUM_ITERS = 3
# Run a wrapped model for a few iterations
model1, optim1, optim_input1 = self._init_nested_model(
wrap=True, use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model1, optim1, num_iters=NUM_ITERS)
# Run a non-wrapped model for a few iterations
model2, optim2, optim_input2 = self._init_nested_model(
wrap=False, use_multiple_param_groups=use_multiple_param_groups,
)
self._step_model(model2, optim2, num_iters=NUM_ITERS)
# Re-key the non-wrapped model's optimizer state dict using parameter
# names (still according to itself)
osd2 = optim2.state_dict()
rekeyed_osd = (
FSDP.rekey_optim_state_dict(
osd2, OptimStateKeyType.PARAM_NAME, model2, optim_input=optim_input2,
) if use_optim_input
else FSDP.rekey_optim_state_dict(
osd2, OptimStateKeyType.PARAM_NAME, model2, optim=optim2,
)
)
# Shard the non-wrapped model's re-keyed optimizer state dict, which
# maps back to (flattened) parameter IDs
sharded_osd = (
FSDP.shard_full_optim_state_dict(
rekeyed_osd, model1, optim_input=optim_input1,
) if use_optim_input
else FSDP.shard_full_optim_state_dict(
rekeyed_osd, model1, optim=optim1,
)
)
# Check that this sharded optimizer state dict matches the wrapped
# model's per-rank optimizer state dict
osd1 = optim1.state_dict()
check_same_param_keys = True
self._check_same_param_groups(
sharded_osd, osd1, check_same_param_keys=check_same_param_keys,
)
self._check_same_state(
sharded_osd, osd1, check_same_param_keys=check_same_param_keys,
)
# As a sanity check, check that we can load and run a few iterations
optim1.load_state_dict(sharded_osd)
self._step_model(model1, optim1, num_iters=NUM_ITERS)
@skip_if_lt_x_gpu(2)
def test_optim_input_warning(self):
"""Tests that passing the ``optim_input`` argument into optimizer state
checkpointing APIs issues a warning."""
wrapped_model, wrapped_optim, wrapped_optim_input = (
self._init_nested_model(wrap=True, use_multiple_param_groups=False)
)
self._step_model(wrapped_model, wrapped_optim, num_iters=2)
def get_warning_context():
warning_regex = "`optim_input` argument is deprecated"
return self.assertWarnsRegex(
expected_warning=UserWarning, expected_regex=warning_regex
)
# Sharded optim state dict
with get_warning_context():
fsdp_osd = FSDP.sharded_optim_state_dict(wrapped_model, wrapped_optim, optim_input=wrapped_optim_input)
with get_warning_context():
FSDP.flatten_sharded_optim_state_dict(fsdp_osd, wrapped_model, optim_input=wrapped_optim_input)
# Full optim state dict
with get_warning_context():
fsdp_osd = FSDP.full_optim_state_dict(
wrapped_model,
wrapped_optim,
optim_input=wrapped_optim_input,
rank0_only=False,
)
with get_warning_context():
FSDP.shard_full_optim_state_dict(fsdp_osd, wrapped_model, optim_input=wrapped_optim_input)
with get_warning_context():
FSDP.scatter_full_optim_state_dict(fsdp_osd, wrapped_model, optim_input=wrapped_optim_input)
# Rekey optim state dict
nonwrapped_model, nonwrapped_optim, nonwrapped_optim_input = (
self._init_nested_model(wrap=False, use_multiple_param_groups=False)
)
with get_warning_context():
rekeyed_osd = FSDP.rekey_optim_state_dict(
fsdp_osd, # from `full_optim_state_dict()`
OptimStateKeyType.PARAM_ID,
nonwrapped_model,
optim_input=nonwrapped_optim_input,
)
self._step_model(nonwrapped_model, nonwrapped_optim, num_iters=2)
osd = nonwrapped_optim.state_dict()
with get_warning_context():
FSDP.rekey_optim_state_dict(
osd,
OptimStateKeyType.PARAM_NAME,
nonwrapped_model,
optim_input=nonwrapped_optim_input,
)
instantiate_parametrized_tests(TestFSDPOptimState)
if __name__ == "__main__":
run_tests()
|