1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
# Owner(s): ["oncall: distributed"]
import functools
import itertools
import sys
import unittest
from typing import Optional
import torch
from torch import distributed as dist
from torch.cuda.amp.common import amp_definitely_not_available
from torch.distributed.fsdp import CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
DummyProcessGroup,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
subtest_name,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
TestCase,
instantiate_parametrized_tests,
parametrize,
run_tests,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
params = "cpu_offload,sharding_strategy,mixed_precision"
cpu_offload_config = [CPUOffload(offload_params=True), CPUOffload(offload_params=False)]
sharding_strategy_config = [ShardingStrategy.SHARD_GRAD_OP, None]
mixed_precision = ["enable_mixed_precision", None]
configs = list(itertools.product(cpu_offload_config,
sharding_strategy_config,
mixed_precision))
test_name_mapping = {
str(CPUOffload(offload_params=True)): "offload_true",
str(CPUOffload(offload_params=False)): "offload_false",
str(ShardingStrategy.SHARD_GRAD_OP): "shard_grad_op",
"enable_mixed_precision": "mixed_precision"
}
subtest_name = functools.partial(subtest_name, test_name_mapping)
class TestShardGradScaler(TestCase):
@unittest.skipIf(amp_definitely_not_available(), "no supported device (cuda, xla) found")
def test_grad_scaling(self):
pg = DummyProcessGroup(0, 1)
scaler = ShardedGradScaler(init_scale=2.0, process_group=pg, enabled=True)
t0 = torch.full((1,), 4.0, dtype=torch.float32, device="cpu")
t1 = torch.full((1,), 8.0, dtype=torch.float32, device="cpu")
outputs = [t1.clone(), (t0.clone(), t1.clone()), [t0.clone(), t1.clone()]]
outputs = scaler.scale(outputs)
self.assertTrue(outputs[0] == 16.0 and outputs[1][0] == 8.0 and outputs[1][1] == 16.0)
self.assertTrue(outputs[2][0] == 8.0 and outputs[2][1] == 16.0)
self.assertTrue(scaler._scale.device == t1.device)
@unittest.skipIf(amp_definitely_not_available(), "no supported device (cuda, xla) found")
def test_scaling_unscaling_sparse(self):
pg = DummyProcessGroup(0, 1)
scaler = ShardedGradScaler(init_scale=2.0, process_group=pg, enabled=True)
inv_scale = torch.full((1,), 0.5, dtype=torch.float, device="cpu")
found_inf = torch.full((1,), 0, dtype=torch.float, device="cpu")
i = torch.tensor([[0, 1, 1],
[2, 0, 2]], device="cpu", dtype=torch.int64)
v = torch.tensor([16.0, 32.0, 64.0], dtype=torch.float, device="cpu")
s = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cpu", dtype=torch.float)
# unscale sparse tensors
s1 = s.clone()
s1.grad = s.clone()
opt = torch.optim.SGD([s1], lr=1.0)
found_inf.zero_()
found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf)[s1.device]
self.assertEqual(found_inf, 0.0)
self.assertEqual(s1.grad.to_dense(), (s / 2).to_dense())
# unscale sparse tensor: inf
v = torch.tensor([16.0, 32.0, float('inf')], dtype=torch.float, device="cpu")
s1.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cpu", dtype=torch.float)
found_inf.zero_()
found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf)[s1.device]
self.assertEqual(found_inf, 1.0)
# unscale sparse tensor: overflow (marked as inf)
i = torch.tensor([[1, 1, 1],
[0, 0, 2]], device="cpu", dtype=torch.int64)
# coalescing sparse tensor here will cause the value to be Inf
v = torch.tensor([2**15, 2**15, 1.0], dtype=torch.float16, device="cpu")
s1 = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cpu", dtype=torch.float16)
s1.grad = s1.clone()
found_inf.zero_()
found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf)[s1.device]
self.assertEqual(found_inf, 1.0)
@unittest.skipIf(amp_definitely_not_available(), "no supported device (cuda, xla) found")
def test_inf_gradients_skip_optim_step(self):
pg = DummyProcessGroup(0, 1)
scaler = ShardedGradScaler(init_scale=2.0, process_group=pg, enabled=True)
loss = torch.full((1,), 4.0, dtype=torch.float32, device="cpu")
t0 = torch.tensor([float('inf')], dtype=torch.float32, device="cpu")
t0.grad = t0.clone()
opt = torch.optim.SGD([t0], lr=1.0)
scaler.scale(loss)
ret_val = scaler.step(opt)
self.assertTrue(ret_val is None)
class TestShardedGradScalerParityWithDDP(FSDPTest):
def _get_init_modes_for_test(self, cpu_offload):
modes = [
CUDAInitMode.CUDA_AFTER,
CUDAInitMode.CUDA_BEFORE
]
# Note that CUDAInitMode.CUDA_NEVER works currently only with CPU
# offload as we explicitly bring the param back to CUDA device. In
# general, it will not work since we try to all_gather p.data which is
# on CPU but NCCL only supports GPU.
if cpu_offload.offload_params:
modes.append(CUDAInitMode.CUDA_NEVER)
return modes
@skip_if_lt_x_gpu(2)
@parametrize(params, configs, subtest_name)
def test_fsdp_ddp_parity_with_grad_scaler(
self,
cpu_offload: CPUOffload,
sharding_strategy: Optional[ShardingStrategy],
mixed_precision: Optional[str],
):
init_modes = self._get_init_modes_for_test(cpu_offload)
mp = MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
) if mixed_precision is not None else None
for cuda_init_mode in init_modes:
self._test_fsdp_parity(
NestedWrappedModule,
FSDPInitMode.RECURSIVE,
cuda_init_mode=cuda_init_mode,
cpu_offload=cpu_offload,
sharding_strategy=sharding_strategy,
mixed_precision=mp,
enable_sharded_grad_scaler=True,
)
instantiate_parametrized_tests(TestShardGradScaler)
instantiate_parametrized_tests(TestShardedGradScalerParityWithDDP)
if __name__ == "__main__":
run_tests()
|