File: test_fsdp_state_dict.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (774 lines) | stat: -rw-r--r-- 32,335 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
# Owner(s): ["oncall: distributed"]

import itertools
import sys
from contextlib import suppress
from copy import deepcopy
from functools import partial
from typing import Any, Dict

import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    checkpoint_wrapper,
)
from torch.distributed.fsdp import CPUOffload, FullStateDictConfig
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import (
    LocalStateDictConfig,
    MixedPrecision,
    StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    FullyShardedDataParallel,
)
from torch.distributed.fsdp.wrap import (
    enable_wrap,
    transformer_auto_wrap_policy,
    wrap,
)
from torch.nn import (
    Linear,
    Module,
    TransformerDecoderLayer,
    TransformerEncoderLayer,
)
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
    CUDAInitMode,
    FSDPInitMode,
    FSDPTest,
    SkipModel,
    TransformerWithSharedParams,
    _assert_module_states,
    _get_state_dict,
    _zero_model,
    get_full_params,
)
from torch.testing._internal.common_utils import (
    TEST_WITH_DEV_DBG_ASAN,
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
)

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)

INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]

NON_ROOT_FSDP_PREFIX = 'non_fsdp_lin'

_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
    _UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)

STATE_DICT_MAPPING = {
    "state_dict": StateDictType.FULL_STATE_DICT,
    "local_state_dict": StateDictType.LOCAL_STATE_DICT,
    "sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}


class Model(Module):
    def __init__(self, wrap_fsdp, register_buffers=False, ignore_inner=False):
        super().__init__()
        self.inner = Linear(*INNER_SHAPE)
        if register_buffers:
            self.inner.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
            self.inner.register_buffer(
                "non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
            )
        if wrap_fsdp:
            self.inner = FSDP(self.inner, ignored_modules=([self.inner] if ignore_inner else []))
        self.outer = Linear(*OUTER_SHAPE)
        if register_buffers:
            self.outer.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
            self.outer.register_buffer(
                "non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
            )

    def forward(self, x):
        # Forward twice.
        i = self.inner(x)
        j = self.inner(x)
        return self.outer(i + j)


class TestFSDPStateDict(FSDPTest):
    @property
    def world_size(self):
        return 2

    def _broadcast_state_dict(self, state_dict):
        olist = [state_dict if self.rank == 0 else None]
        dist.broadcast_object_list(olist)
        return olist[0]

    def _compare_models(self, model, model_new, assert_fn, check_fp16=False):
        with FullyShardedDataParallel.summon_full_params(model):
            with FullyShardedDataParallel.summon_full_params(model_new):
                params = list(model.parameters())
                params_new = list(model_new.parameters())
                assert_fn(params, params_new)
                if check_fp16:
                    for tensor in model_new.parameters():
                        self.assertEqual(tensor.dtype, torch.float16)

    def _get_simple_nested_model(self, *fsdp_args, wrap=True, checkpoint_wrap=False, **fsdp_kwargs):
        if wrap:
            lin1 = nn.Linear(10, 10, bias=False).cuda()
            lin2 = nn.Linear(10, 10, bias=False).cuda()
            if checkpoint_wrap:
                lin1 = checkpoint_wrapper(lin1)
                lin2 = checkpoint_wrapper(lin2)
            seq = nn.Sequential(FSDP(lin1, *fsdp_args, **fsdp_kwargs), lin2)
            if checkpoint_wrap:
                seq = checkpoint_wrapper(seq)
            model = FSDP(seq, *fsdp_args, **fsdp_kwargs)
        else:
            model = nn.Sequential(
                nn.Linear(10, 10, bias=False).cuda(), nn.Linear(10, 10, bias=False).cuda()
            )
        return model

    def _get_simple_model(self, *fsdp_args, checkpoint_wrap=False, **fsdp_kwargs):
        lin = nn.Linear(10, 10, bias=False).cuda()
        if checkpoint_wrap:
            lin = checkpoint_wrapper(lin)
        model = FSDP(lin, *fsdp_args, **fsdp_kwargs)
        return model

    def _get_non_fsdp_root_module(self, *fsdp_args, wrap=True, **fsdp_kwargs):
        class FSDPContainer(nn.Module):
            def __init__(self, fsdp_1, fsdp_2):
                super().__init__()
                self.non_fsdp_lin = nn.Linear(10, 10, bias=False).cuda()
                self.fsdp_1 = fsdp_1
                self.fsdp_2 = fsdp_2

            def forward(self, x):
                x = self.non_fsdp_lin(x)
                x = self.fsdp_1(x)
                x = self.fsdp_2(x)
                return x

        return FSDPContainer(
            self._get_simple_nested_model(*fsdp_args, wrap=wrap, **fsdp_kwargs),
            self._get_simple_nested_model(*fsdp_args, wrap=wrap, **fsdp_kwargs),
        )

    def _get_state_dict_mgr(
        self,
        model: nn.Module,
        state_dict_type: str,
        state_dict_rank0_and_offload: bool,
    ):
        _state_dict_type = STATE_DICT_MAPPING[state_dict_type]
        if state_dict_type == "state_dict":
            config = FullStateDictConfig(
                rank0_only=state_dict_rank0_and_offload,
                offload_to_cpu=state_dict_rank0_and_offload,
            )
        else:
            config = None
        return FSDP.state_dict_type(model, _state_dict_type, config)

    def _validate_state_dict_contents(
        self, model, fsdp_state_dict, state_dict_rank0_and_offload, ignore_keys=None
    ):
        if state_dict_rank0_and_offload:
            if self.rank == 0:
                self.assertNotEqual(fsdp_state_dict, {})
                for key, tensor in fsdp_state_dict.items():
                    if ignore_keys and key in ignore_keys:
                        continue
                    self.assertEqual(
                        tensor.device,
                        torch.device("cpu"),
                        f"{key} is unexpectedly on device {tensor.device}",
                    )
            else:
                # For non-FSDP roots, the non FSDP portion can still have parameters on rank 0,
                # so bypass the check for now.
                if isinstance(model, FSDP):
                    self.assertEqual(fsdp_state_dict, {})

    @skip_if_lt_x_gpu(2)
    @parametrize("state_dict_type", _UNFLATTENED_STATE_DICT_IMPLS)
    @parametrize("checkpoint_wrap", ["first", "second", "both"])
    def test_fsdp_state_dict_with_activation_checkpoint(self, state_dict_type, checkpoint_wrap):
        """Tests saving the state dict, zeroing a target model's parameters, and
        loading the state dict, where the source and target models may have a
        checkpoint wrapper."""
        for model_call in [
            partial(self._get_simple_model),
            partial(self._get_simple_nested_model)
        ]:
            model = model_call(checkpoint_wrap=(checkpoint_wrap in ["first", "both"]))
            with FSDP.state_dict_type(model, STATE_DICT_MAPPING[state_dict_type]):
                state_dict = _gather_state_dict(_get_state_dict(model, False, False))
                # Possibly wrap new model in activation checkpoint wrapper to test save/
                # load with this wrapper
                model_new = model_call(checkpoint_wrap=(checkpoint_wrap in ["second", "both"]))
                _zero_model(model_new)
                self._compare_models(model, model_new, self.assertNotEqual)
                # Would fail if checkpoint_wrapper did not correctly implement state_dict pre/post hooks
                model_new.load_state_dict(state_dict, strict=True)
                self._compare_models(model, model_new, self.assertEqual)

    @skip_if_lt_x_gpu(2)
    def test_state_dict_rank0_offload_save_load_flow(self):
        """Tests saving a model checkpoint only on rank 0 and loading it only
        on rank 0 with ``sync_module_states=True`` to emulate the workflow to
        avoid redundant CPU memory usage."""
        auto_wrap_policy = partial(
            transformer_auto_wrap_policy,
            transformer_layer_cls={TransformerEncoderLayer, TransformerDecoderLayer},
        )
        fsdp_kwargs = {"auto_wrap_policy": auto_wrap_policy}
        fsdp_model = TransformerWithSharedParams.init(
            self.process_group,
            FSDPInitMode.RECURSIVE,
            CUDAInitMode.CUDA_BEFORE,
            fsdp_kwargs,
        )
        # Force model parameters and buffers to be nonzero
        with FSDP.summon_full_params(fsdp_model):
            for tensor in itertools.chain(fsdp_model.parameters(), fsdp_model.buffers()):
                if torch.count_nonzero(tensor) == 0:
                    with torch.no_grad():
                        tensor.add_(torch.tensor(1, dtype=tensor.dtype, device=tensor.device))
        with self._get_state_dict_mgr(fsdp_model, "state_dict", True):
            state_dict = deepcopy(_get_state_dict(fsdp_model))
        # Initialize a non-wrapped model on all ranks
        new_model = TransformerWithSharedParams.init(
            self.process_group,
            FSDPInitMode.NO_FSDP,
            CUDAInitMode.CUDA_BEFORE,
        )
        _zero_model(new_model, zero_buffers=True)
        # Only load the checkpoint on rank 0
        if self.rank == 0:
            new_model.load_state_dict(state_dict, strict=True)
        _assert_module_states(
            new_model,
            process_group=self.process_group,
            assert_fn=self.assertNotEqual,
        )
        # Broadcast the module states from rank 0 with `sync_module_states=True`
        new_fsdp_model = FSDP(
            new_model,
            device_id=torch.cuda.current_device(),
            auto_wrap_policy=auto_wrap_policy,
            sync_module_states=True,
        )
        # Check FSDP models are equal across ranks
        with FSDP.summon_full_params(new_fsdp_model):
            _assert_module_states(
                new_fsdp_model,
                process_group=self.process_group,
                assert_fn=self.assertEqual,
            )
        # Check FSDP models correctly loaded the checkpoint
        with FullyShardedDataParallel.summon_full_params(fsdp_model):
            with FullyShardedDataParallel.summon_full_params(new_fsdp_model):
                params = list(fsdp_model.parameters())
                params_new = list(new_fsdp_model.parameters())
                self.assertEqual(params, params_new)

    @skip_if_lt_x_gpu(2)
    @parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
    )
    @parametrize("fp16", [True, False])
    @parametrize("state_dict_rank0_and_offload", [True, False])
    def test_basic_save_and_load_state_dict(
        self, state_dict_type, cpu_offload, fp16, state_dict_rank0_and_offload
    ):
        """
        Tests that we can save a state_dict and load it into a blank model
        with various configs such as fp16 and cpu offload and parameters
        match as expected.
        """
        if state_dict_rank0_and_offload and state_dict_type != "state_dict":
            return
        for model_call in [
            partial(self._get_non_fsdp_root_module, cpu_offload=cpu_offload),
            partial(self._get_simple_nested_model, cpu_offload=cpu_offload),
            partial(self._get_simple_model, cpu_offload=cpu_offload),
        ]:
            model = model_call()

            ctx = self._get_state_dict_mgr(
                model, state_dict_type, state_dict_rank0_and_offload
            )
            with ctx:
                fsdp_state_dict = _get_state_dict(
                    model, cpu_offload.offload_params, fp16
                )

            ignore_keys = [k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k]

            self._validate_state_dict_contents(
                model, fsdp_state_dict, state_dict_rank0_and_offload, ignore_keys=ignore_keys,
            )
            if fp16:
                # Verify fp16 is the type
                for tensor in fsdp_state_dict.values():
                    self.assertEqual(tensor.dtype, torch.float16)

            model_new = model_call()
            if not cpu_offload.offload_params:
                model_new = model_new.cuda()
            if fp16:
                model_new.half()

            # zero the model to ensure parameters are different.
            _zero_model(model_new)
            self._compare_models(model, model_new, self.assertNotEqual)

            # Verify parameters are the same in the new model.
            if state_dict_rank0_and_offload:
                # Broadcast the state dict and move it back to GPU in
                # preparation for loading.
                if not isinstance(model, FSDP):
                    # Move everything to CPU to avoid running into
                    # https://github.com/pytorch/pytorch/issues/77113, some params
                    # will still be on GPU for non FSDP root modules.
                    for k in fsdp_state_dict.keys():
                        fsdp_state_dict[k] = fsdp_state_dict[k].cpu()
                fsdp_state_dict = self._broadcast_state_dict(fsdp_state_dict)
                for key in fsdp_state_dict.keys():
                    fsdp_state_dict[key] = fsdp_state_dict[key].cuda()
            with FSDP.state_dict_type(model_new, STATE_DICT_MAPPING[state_dict_type]):
                model_new.load_state_dict(fsdp_state_dict, strict=True)

            self._compare_models(model, model_new, self.assertEqual, check_fp16=fp16)

    @skip_if_lt_x_gpu(2)
    @parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
    @parametrize("mixed_precision", [True, False])
    @parametrize("state_dict_rank0_and_offload", [True, False])
    def test_save_and_load_after_forward_state_dict(
        self, state_dict_type, mixed_precision, state_dict_rank0_and_offload
    ):
        """
        Test that saving after some training results in params being updated as
        expected.
        """
        if state_dict_rank0_and_offload and state_dict_type != "state_dict":
            return
        torch.cuda.set_device(self.rank)
        mixed_precision = (
            MixedPrecision(
                param_dtype=torch.float16,
                reduce_dtype=torch.float16,
                buffer_dtype=torch.float16,
            )
            if mixed_precision
            else None
        )
        model = self._get_simple_nested_model(mixed_precision=mixed_precision)
        optim = torch.optim.SGD(model.parameters(), lr=0.1)
        initial_params = get_full_params(model)
        for _ in range(6):
            inp = torch.randn(1, 10, device=torch.cuda.current_device())
            output = model(*inp)
            loss = output.sum()
            expected_dtype = torch.float32 if mixed_precision is None else torch.float16
            self.assertEqual(expected_dtype, loss.dtype)
            loss.backward()
            optim.step()

        trained_params = get_full_params(model)
        # Ensure some training occured
        self.assertNotEqual(initial_params, trained_params)
        # Save a copy of the state_dict
        fsd_mgr = self._get_state_dict_mgr(
            model, state_dict_type, state_dict_rank0_and_offload
        )
        with fsd_mgr:
            state_dict = model.state_dict()
            if state_dict_type == "state_dict":
                state_dict = {k: v.clone() for k, v in state_dict.items()}
            else:
                for sharded_tensor in state_dict.values():
                    shard = sharded_tensor._local_shards[0]
                    shard.tensor = shard.tensor.clone().detach_()
        self._validate_state_dict_contents(model, state_dict, state_dict_rank0_and_offload)
        _zero_model(model)

        # Ensure checkpointed params have the full param dtype
        for tensor in state_dict.values():
            self.assertEqual(tensor.dtype, torch.float32)

        # Load state_dict into zeroed model
        if state_dict_rank0_and_offload:
            # Broadcast the state dict and move it back to GPU in
            # preparation for loading.
            state_dict = self._broadcast_state_dict(state_dict)
            for key in state_dict.keys():
                state_dict[key] = state_dict[key].cuda()

        with FSDP.state_dict_type(model, STATE_DICT_MAPPING[state_dict_type]):
            model.load_state_dict(state_dict, strict=True)
        loaded_params = get_full_params(model)
        self.assertEqual(loaded_params, trained_params)

    def _initialize_model(
        self,
        wrap_fsdp: bool,
        wrap_ddp: bool = True,
        register_buffers: bool = False,
    ):
        # keep everything deterministic for input data
        torch.manual_seed(0)

        model = Model(wrap_fsdp, register_buffers=register_buffers).cuda()
        if wrap_fsdp:
            model = FSDP(model)
        elif wrap_ddp:
            model = DistributedDataParallel(model, device_ids=[self.rank])
        return model

    @staticmethod
    def _state_dict(model: Module, state_dict_type: str):
        try:
            enum_val = STATE_DICT_MAPPING[state_dict_type]
        except KeyError:
            raise ValueError(f"No state_dict type for {state_dict_type}")

        with FSDP.state_dict_type(model, enum_val):
            return model.state_dict()

    @staticmethod
    def _load_state_dict(
        model: Module, state_dict_type: str, state_dict: Dict[str, Any]
    ):
        try:
            enum_val = STATE_DICT_MAPPING[state_dict_type]
        except KeyError:
            raise ValueError(f"No state_dict for {state_dict_type}")

        with FSDP.state_dict_type(model, enum_val):
            return model.load_state_dict(state_dict, strict=True)

    def _dist_train(
        self, wrap_fsdp: bool, state_dict_type: str = "", move_to_cpu: bool = False
    ):
        # TODO: Move this test to common_fsdp.
        model = self._initialize_model(wrap_fsdp)
        optim = SGD(model.parameters(), lr=0.1)

        in_data = torch.rand(64, 4, requires_grad=True, device=torch.device("cuda"))
        for _ in range(3):
            out = model(in_data)
            out.sum().backward()
            optim.step()
            optim.zero_grad()

        if wrap_fsdp:
            blank_model = FSDP(Model(True).cuda())
            _zero_model(blank_model)
            state_dict = self._state_dict(model, state_dict_type)
            if move_to_cpu:
                for key in list(state_dict.keys()):
                    tensor = state_dict[key]
                    if isinstance(tensor, torch.Tensor):
                        state_dict[key] = tensor.cpu()
                    else:
                        shards = tensor.local_shards()
                        if shards:
                            shards[0].tensor = shards[0].tensor.cpu()

            self._load_state_dict(blank_model, state_dict_type, state_dict)
            return get_full_params(blank_model)
        else:
            return list(model.parameters())

    @skip_if_lt_x_gpu(2)
    @parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
    def test_state_dict_save_load_flow(self, state_dict_type):
        for move_to_cpu in [True, False]:
            with self.subTest(move_to_cpu=move_to_cpu):
                fsdp_params = self._dist_train(
                    wrap_fsdp=True, state_dict_type=state_dict_type, move_to_cpu=move_to_cpu,
                )
                ddp_params = self._dist_train(wrap_fsdp=False)
                self.assertEqual(ddp_params, fsdp_params)

    @skip_if_lt_x_gpu(2)
    @parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
    def test_fsdp_state_dict_keys(self, state_dict_type):
        state_dict = self._state_dict(self._initialize_model(True), state_dict_type)
        if state_dict_type == "local_state_dict":
            self.assertEqual(set(["flat_param", "inner.flat_param"]), state_dict.keys())
        elif state_dict_type in ("state_dict", "sharded_state_dict"):
            # Keys should match local model.
            local_model = self._initialize_model(wrap_fsdp=False, wrap_ddp=False)
            local_keys = local_model.state_dict().keys()
            self.assertEqual(state_dict.keys(), local_keys)
        else:
            raise NotImplementedError(f"No test for {state_dict_type}!")

    @skip_if_lt_x_gpu(2)
    @parametrize("state_dict_type", _UNFLATTENED_STATE_DICT_IMPLS)
    @parametrize("state_dict_rank0_and_offload", [True, False])
    @parametrize("fsdp_root", [True, False])
    def test_state_dict_load_into_local_module(
        self, state_dict_type, state_dict_rank0_and_offload, fsdp_root,
    ):
        """
        Tests that FSDP's state_dict can be loaded into a local model.
        """
        if state_dict_rank0_and_offload and state_dict_type != "state_dict":
            return
        if not fsdp_root:
            model = self._get_non_fsdp_root_module()
        else:
            model = self._initialize_model(wrap_fsdp=True, register_buffers=True)
        optim = SGD(model.parameters(), lr=0.1)
        if not fsdp_root:
            in_data = torch.randn(1, 10, requires_grad=True, device=torch.device("cuda"))
        else:
            in_data = torch.rand(64, 4, requires_grad=True, device=torch.device("cuda"))
        for _ in range(3):
            out = model(in_data)
            out.sum().backward()
            optim.step()
            optim.zero_grad()

        with FullyShardedDataParallel.summon_full_params(model):
            fsdp_params = deepcopy(list(model.parameters()))

        # get FSDP state_dict. Note that by default we return full_state_dict.
        sd_mgr = self._get_state_dict_mgr(
            model, state_dict_type, state_dict_rank0_and_offload
        )
        with sd_mgr:
            fsdp_state_dict = model.state_dict()

        ignore_keys = [k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k]
        self._validate_state_dict_contents(
            model, fsdp_state_dict, state_dict_rank0_and_offload, ignore_keys=ignore_keys,
        )
        # Create zeroed local model
        if not fsdp_root:
            blank_local_model = self._get_non_fsdp_root_module(wrap=False)
        else:
            blank_local_model = self._initialize_model(
                wrap_fsdp=False, wrap_ddp=False, register_buffers=True
            )

        # Nothing should be FSDP
        for mod in blank_local_model.modules():
            self.assertFalse(isinstance(mod, FSDP))

        for param in blank_local_model.parameters():
            with torch.no_grad():
                param.zero_()

        fsdp_state_dict = _gather_state_dict(fsdp_state_dict)

        # Load fsdp's full state dict into the local and verify params are as
        # expected.
        if state_dict_rank0_and_offload:
            # Broadcast + CUDA state_dict
            if not isinstance(model, FSDP):
                # Some portions of the model on rank 0 might not be on CPU,
                # move everything to CPU to avoid running into
                # https://github.com/pytorch/pytorch/issues/77113.
                for k, t in fsdp_state_dict.items():
                    if t.device != torch.device("cpu"):
                        fsdp_state_dict[k] = t.cpu()
            fsdp_state_dict = self._broadcast_state_dict(fsdp_state_dict)
            for key in fsdp_state_dict.keys():
                fsdp_state_dict[key] = fsdp_state_dict[key].cuda()

        # if self.rank == 0:
        blank_local_model.load_state_dict(fsdp_state_dict, strict=True)
        local_params = list(blank_local_model.parameters())
        for fsdp_param, local_param in zip(fsdp_params, local_params):
            self.assertEqual(fsdp_param, local_param)

    @skip_if_lt_x_gpu(2)
    @parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
    @parametrize("double_nest", [True])
    def test_state_dict_skip_module(self, state_dict_type, double_nest):
        torch.cuda.set_device(self.rank)

        def _create_module(wrap_fsdp=True):
            LINEAR_SKIP = "linear_skip"
            ctx = enable_wrap(wrapper_cls=FSDP) if wrap_fsdp else suppress()
            with ctx:
                module = SkipModel(double_nest=double_nest)
                # Full name of linear_skip param tensors in SkipModel, as would be
                # stored in checkpoint.
                linear_skip_tensor_names = [
                    k
                    for k in dict(module.named_parameters()).keys()
                    if LINEAR_SKIP in k
                ]
                # skip SkipModule
                linear_skip = getattr(module, LINEAR_SKIP)
                delattr(module, LINEAR_SKIP)
                # Wrap FSDP
                fsdp = wrap(module)
                # reattach
                setattr(module, LINEAR_SKIP, linear_skip)
                return fsdp, linear_skip_tensor_names

        fsdp, linear_skip_tensor_names = _create_module()
        # Run a forward pass
        inp = torch.randn((1, 10), device=torch.cuda.current_device())
        loss = fsdp(inp)
        loss.sum().backward()

        with FSDP.state_dict_type(fsdp, STATE_DICT_MAPPING[state_dict_type]):
            state_dict = fsdp.state_dict()
        if self.rank == 0 and state_dict_type != "local_state_dict":
            sd_keys = list(state_dict.keys())
            expected = list(SkipModel(double_nest=False).state_dict().keys())
            self.assertEqual(sorted(sd_keys), sorted(expected))
            # TODO: parameters in linear_skip_tensor_names should not be handled
            # by FSDP.state_dict(). Have a check once this is implemented in
            # FSDP.state_dict().

        # Check that it can be loaded into FSDP.
        new_fsdp, _ = _create_module()
        _zero_model(new_fsdp)
        for (p1, p2) in zip(fsdp.parameters(), new_fsdp.parameters()):
            self.assertNotEqual(p1, p2)
        with FSDP.state_dict_type(new_fsdp, STATE_DICT_MAPPING[state_dict_type]):
            if state_dict_type != "local_state_dict":
                # FlatParameter has not supported deepcopy yet.
                state_dict = deepcopy(state_dict)
            new_fsdp.load_state_dict(state_dict, strict=True)
        for (p1, p2) in zip(fsdp.parameters(), new_fsdp.parameters()):
            self.assertEqual(p1, p2)

        # Test that the checkpoint can be loaded into a local model.
        local, _ = _create_module(wrap_fsdp=False)
        for param in local.parameters():
            with torch.no_grad():
                param.zero_()

        with fsdp.summon_full_params(fsdp):
            for (p1, p2) in zip(fsdp.parameters(), local.parameters()):
                self.assertNotEqual(p1, p2)

        if state_dict_type == "local_state_dict":
            return
        state_dict = _gather_state_dict(state_dict)
        with fsdp.summon_full_params(fsdp):
            if self.rank == 0:
                local.load_state_dict(state_dict, strict=True)
                for (p1, p2) in zip(fsdp.parameters(), local.parameters()):
                    self.assertEqual(p1, p2)

    @skip_if_lt_x_gpu(2)
    def test_wrong_state_dict_config(self):
        model = FSDP(Model(wrap_fsdp=True).cuda())
        with self.assertRaisesRegex(RuntimeError, "Expected state_dict_config of type"):
            with model.state_dict_type(
                model, StateDictType.FULL_STATE_DICT, LocalStateDictConfig()
            ):
                pass

    @skip_if_lt_x_gpu(2)
    @parametrize("state_dict_type", _UNFLATTENED_STATE_DICT_IMPLS)
    @parametrize("prefix", [True, False])
    @parametrize("ignore_inner", [True, False])
    def test_state_dict_with_ignored_modules(self, state_dict_type, prefix, ignore_inner):
        # Initialize an FSDP-wrapped model with an ignored module that includes
        # both parameters and a buffer
        model = Model(wrap_fsdp=True, register_buffers=True, ignore_inner=ignore_inner).cuda()
        ignored_modules = [model.outer]
        ignored_tensor_to_tensor_name = {
            model.outer.bias: "outer.bias",
            model.outer.weight: "outer.weight",
        }
        if ignore_inner:
            ignored_tensor_to_tensor_name = {
                **ignored_tensor_to_tensor_name,
                model.inner.bias: "inner.bias",
                model.inner.weight: "inner.weight",
            }
        # Note that when model.inner is not ignored this test also ensures
        # non-ignored buffers are not cloned.
        buffer_to_buffer_name = {
            model.inner.buffer: "inner.buffer", model.outer.buffer: "outer.buffer",
        }
        fsdp_model = FSDP(model, ignored_modules=ignored_modules)
        prefix_str = "foo." if prefix else ""
        with FSDP.state_dict_type(fsdp_model, STATE_DICT_MAPPING[state_dict_type]):
            sd1 = _gather_state_dict(fsdp_model.state_dict(prefix=prefix_str))
        with FSDP.summon_full_params(fsdp_model):
            fsdp_params = deepcopy(list(fsdp_model.parameters()))
        # Check that the ignored parameters and all buffers are not cloned
        for tensor, tensor_name in {
            **ignored_tensor_to_tensor_name,
            **buffer_to_buffer_name,
        }.items():
            prefixed_tensor_name = f"{prefix_str}{tensor_name}"
            self.assertTrue(prefixed_tensor_name in sd1)
            self.assertEqual(tensor.data_ptr(), sd1[prefixed_tensor_name].data_ptr(), f"{prefixed_tensor_name}")
        # Check that the state dict can be loaded into a non-wrapped version of
        # the model
        nonwrapped_model = Model(wrap_fsdp=False, register_buffers=True).cuda()
        for param in nonwrapped_model.parameters():
            with torch.no_grad():
                param.zero_()

        to_load = {k[len(prefix_str):] : v for k, v in sd1.items()}
        nonwrapped_model.load_state_dict(to_load, strict=True)
        local_params = list(nonwrapped_model.parameters())
        for fsdp_param, local_param in zip(fsdp_params, local_params):
            self.assertEqual(fsdp_param, local_param)
        # Check that if we save a state dict again, the ignored parameters and
        # buffer still have the same data pointer
        with FSDP.state_dict_type(fsdp_model, STATE_DICT_MAPPING[state_dict_type]):
            sd2 = fsdp_model.state_dict(prefix=prefix_str)
        for tensor, tensor_name in {
            **ignored_tensor_to_tensor_name,
            **buffer_to_buffer_name,
        }.items():
            prefixed_tensor_name = f"{prefix_str}{tensor_name}"
            self.assertTrue(prefixed_tensor_name in sd2)
            self.assertEqual(tensor.data_ptr(), sd2[prefixed_tensor_name].data_ptr())
            self.assertEqual(sd1[prefixed_tensor_name].data_ptr(), sd2[prefixed_tensor_name].data_ptr())

    @skip_if_lt_x_gpu(2)
    def test_state_dict_type(self):
        module = SkipModel(double_nest=True)
        with enable_wrap(wrapper_cls=FSDP):
            fsdp = wrap(module)
        with FSDP.state_dict_type(fsdp, StateDictType.LOCAL_STATE_DICT):
            pass
        for module in FSDP.fsdp_modules(fsdp):
            self.assertEqual(module._state_dict_type, StateDictType.FULL_STATE_DICT)


instantiate_parametrized_tests(TestFSDPStateDict)

if __name__ == "__main__":
    run_tests()