1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
# Owner(s): ["oncall: distributed"]
import itertools
import sys
from contextlib import suppress
from copy import deepcopy
from functools import partial
from typing import Any, Dict
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
)
from torch.distributed.fsdp import CPUOffload, FullStateDictConfig
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import (
LocalStateDictConfig,
MixedPrecision,
StateDictType,
)
from torch.distributed.fsdp._shard_utils import _gather_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import (
FullyShardedDataParallel,
)
from torch.distributed.fsdp.wrap import (
enable_wrap,
transformer_auto_wrap_policy,
wrap,
)
from torch.nn import (
Linear,
Module,
TransformerDecoderLayer,
TransformerEncoderLayer,
)
from torch.nn.parallel import DistributedDataParallel
from torch.optim import SGD
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
SkipModel,
TransformerWithSharedParams,
_assert_module_states,
_get_state_dict,
_zero_model,
get_full_params,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize,
run_tests,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
INNER_SHAPE = [4, 4]
OUTER_SHAPE = [4, 5]
BUFFER_SHAPE = [5, 5]
NON_ROOT_FSDP_PREFIX = 'non_fsdp_lin'
_UNFLATTENED_STATE_DICT_IMPLS = ["state_dict", "sharded_state_dict"]
_FLATTENED_STATE_DICT_IMPLS = ["local_state_dict"]
_SUPPORTED_STATE_DICT_IMPLS = (
_UNFLATTENED_STATE_DICT_IMPLS + _FLATTENED_STATE_DICT_IMPLS
)
STATE_DICT_MAPPING = {
"state_dict": StateDictType.FULL_STATE_DICT,
"local_state_dict": StateDictType.LOCAL_STATE_DICT,
"sharded_state_dict": StateDictType.SHARDED_STATE_DICT,
}
class Model(Module):
def __init__(self, wrap_fsdp, register_buffers=False, ignore_inner=False):
super().__init__()
self.inner = Linear(*INNER_SHAPE)
if register_buffers:
self.inner.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
self.inner.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
if wrap_fsdp:
self.inner = FSDP(self.inner, ignored_modules=([self.inner] if ignore_inner else []))
self.outer = Linear(*OUTER_SHAPE)
if register_buffers:
self.outer.register_buffer("buffer", torch.randn(BUFFER_SHAPE))
self.outer.register_buffer(
"non_persistent_buffer", torch.randn(BUFFER_SHAPE), persistent=False
)
def forward(self, x):
# Forward twice.
i = self.inner(x)
j = self.inner(x)
return self.outer(i + j)
class TestFSDPStateDict(FSDPTest):
@property
def world_size(self):
return 2
def _broadcast_state_dict(self, state_dict):
olist = [state_dict if self.rank == 0 else None]
dist.broadcast_object_list(olist)
return olist[0]
def _compare_models(self, model, model_new, assert_fn, check_fp16=False):
with FullyShardedDataParallel.summon_full_params(model):
with FullyShardedDataParallel.summon_full_params(model_new):
params = list(model.parameters())
params_new = list(model_new.parameters())
assert_fn(params, params_new)
if check_fp16:
for tensor in model_new.parameters():
self.assertEqual(tensor.dtype, torch.float16)
def _get_simple_nested_model(self, *fsdp_args, wrap=True, checkpoint_wrap=False, **fsdp_kwargs):
if wrap:
lin1 = nn.Linear(10, 10, bias=False).cuda()
lin2 = nn.Linear(10, 10, bias=False).cuda()
if checkpoint_wrap:
lin1 = checkpoint_wrapper(lin1)
lin2 = checkpoint_wrapper(lin2)
seq = nn.Sequential(FSDP(lin1, *fsdp_args, **fsdp_kwargs), lin2)
if checkpoint_wrap:
seq = checkpoint_wrapper(seq)
model = FSDP(seq, *fsdp_args, **fsdp_kwargs)
else:
model = nn.Sequential(
nn.Linear(10, 10, bias=False).cuda(), nn.Linear(10, 10, bias=False).cuda()
)
return model
def _get_simple_model(self, *fsdp_args, checkpoint_wrap=False, **fsdp_kwargs):
lin = nn.Linear(10, 10, bias=False).cuda()
if checkpoint_wrap:
lin = checkpoint_wrapper(lin)
model = FSDP(lin, *fsdp_args, **fsdp_kwargs)
return model
def _get_non_fsdp_root_module(self, *fsdp_args, wrap=True, **fsdp_kwargs):
class FSDPContainer(nn.Module):
def __init__(self, fsdp_1, fsdp_2):
super().__init__()
self.non_fsdp_lin = nn.Linear(10, 10, bias=False).cuda()
self.fsdp_1 = fsdp_1
self.fsdp_2 = fsdp_2
def forward(self, x):
x = self.non_fsdp_lin(x)
x = self.fsdp_1(x)
x = self.fsdp_2(x)
return x
return FSDPContainer(
self._get_simple_nested_model(*fsdp_args, wrap=wrap, **fsdp_kwargs),
self._get_simple_nested_model(*fsdp_args, wrap=wrap, **fsdp_kwargs),
)
def _get_state_dict_mgr(
self,
model: nn.Module,
state_dict_type: str,
state_dict_rank0_and_offload: bool,
):
_state_dict_type = STATE_DICT_MAPPING[state_dict_type]
if state_dict_type == "state_dict":
config = FullStateDictConfig(
rank0_only=state_dict_rank0_and_offload,
offload_to_cpu=state_dict_rank0_and_offload,
)
else:
config = None
return FSDP.state_dict_type(model, _state_dict_type, config)
def _validate_state_dict_contents(
self, model, fsdp_state_dict, state_dict_rank0_and_offload, ignore_keys=None
):
if state_dict_rank0_and_offload:
if self.rank == 0:
self.assertNotEqual(fsdp_state_dict, {})
for key, tensor in fsdp_state_dict.items():
if ignore_keys and key in ignore_keys:
continue
self.assertEqual(
tensor.device,
torch.device("cpu"),
f"{key} is unexpectedly on device {tensor.device}",
)
else:
# For non-FSDP roots, the non FSDP portion can still have parameters on rank 0,
# so bypass the check for now.
if isinstance(model, FSDP):
self.assertEqual(fsdp_state_dict, {})
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", _UNFLATTENED_STATE_DICT_IMPLS)
@parametrize("checkpoint_wrap", ["first", "second", "both"])
def test_fsdp_state_dict_with_activation_checkpoint(self, state_dict_type, checkpoint_wrap):
"""Tests saving the state dict, zeroing a target model's parameters, and
loading the state dict, where the source and target models may have a
checkpoint wrapper."""
for model_call in [
partial(self._get_simple_model),
partial(self._get_simple_nested_model)
]:
model = model_call(checkpoint_wrap=(checkpoint_wrap in ["first", "both"]))
with FSDP.state_dict_type(model, STATE_DICT_MAPPING[state_dict_type]):
state_dict = _gather_state_dict(_get_state_dict(model, False, False))
# Possibly wrap new model in activation checkpoint wrapper to test save/
# load with this wrapper
model_new = model_call(checkpoint_wrap=(checkpoint_wrap in ["second", "both"]))
_zero_model(model_new)
self._compare_models(model, model_new, self.assertNotEqual)
# Would fail if checkpoint_wrapper did not correctly implement state_dict pre/post hooks
model_new.load_state_dict(state_dict, strict=True)
self._compare_models(model, model_new, self.assertEqual)
@skip_if_lt_x_gpu(2)
def test_state_dict_rank0_offload_save_load_flow(self):
"""Tests saving a model checkpoint only on rank 0 and loading it only
on rank 0 with ``sync_module_states=True`` to emulate the workflow to
avoid redundant CPU memory usage."""
auto_wrap_policy = partial(
transformer_auto_wrap_policy,
transformer_layer_cls={TransformerEncoderLayer, TransformerDecoderLayer},
)
fsdp_kwargs = {"auto_wrap_policy": auto_wrap_policy}
fsdp_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
fsdp_kwargs,
)
# Force model parameters and buffers to be nonzero
with FSDP.summon_full_params(fsdp_model):
for tensor in itertools.chain(fsdp_model.parameters(), fsdp_model.buffers()):
if torch.count_nonzero(tensor) == 0:
with torch.no_grad():
tensor.add_(torch.tensor(1, dtype=tensor.dtype, device=tensor.device))
with self._get_state_dict_mgr(fsdp_model, "state_dict", True):
state_dict = deepcopy(_get_state_dict(fsdp_model))
# Initialize a non-wrapped model on all ranks
new_model = TransformerWithSharedParams.init(
self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
)
_zero_model(new_model, zero_buffers=True)
# Only load the checkpoint on rank 0
if self.rank == 0:
new_model.load_state_dict(state_dict, strict=True)
_assert_module_states(
new_model,
process_group=self.process_group,
assert_fn=self.assertNotEqual,
)
# Broadcast the module states from rank 0 with `sync_module_states=True`
new_fsdp_model = FSDP(
new_model,
device_id=torch.cuda.current_device(),
auto_wrap_policy=auto_wrap_policy,
sync_module_states=True,
)
# Check FSDP models are equal across ranks
with FSDP.summon_full_params(new_fsdp_model):
_assert_module_states(
new_fsdp_model,
process_group=self.process_group,
assert_fn=self.assertEqual,
)
# Check FSDP models correctly loaded the checkpoint
with FullyShardedDataParallel.summon_full_params(fsdp_model):
with FullyShardedDataParallel.summon_full_params(new_fsdp_model):
params = list(fsdp_model.parameters())
params_new = list(new_fsdp_model.parameters())
self.assertEqual(params, params_new)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
@parametrize(
"cpu_offload",
[CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
)
@parametrize("fp16", [True, False])
@parametrize("state_dict_rank0_and_offload", [True, False])
def test_basic_save_and_load_state_dict(
self, state_dict_type, cpu_offload, fp16, state_dict_rank0_and_offload
):
"""
Tests that we can save a state_dict and load it into a blank model
with various configs such as fp16 and cpu offload and parameters
match as expected.
"""
if state_dict_rank0_and_offload and state_dict_type != "state_dict":
return
for model_call in [
partial(self._get_non_fsdp_root_module, cpu_offload=cpu_offload),
partial(self._get_simple_nested_model, cpu_offload=cpu_offload),
partial(self._get_simple_model, cpu_offload=cpu_offload),
]:
model = model_call()
ctx = self._get_state_dict_mgr(
model, state_dict_type, state_dict_rank0_and_offload
)
with ctx:
fsdp_state_dict = _get_state_dict(
model, cpu_offload.offload_params, fp16
)
ignore_keys = [k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k]
self._validate_state_dict_contents(
model, fsdp_state_dict, state_dict_rank0_and_offload, ignore_keys=ignore_keys,
)
if fp16:
# Verify fp16 is the type
for tensor in fsdp_state_dict.values():
self.assertEqual(tensor.dtype, torch.float16)
model_new = model_call()
if not cpu_offload.offload_params:
model_new = model_new.cuda()
if fp16:
model_new.half()
# zero the model to ensure parameters are different.
_zero_model(model_new)
self._compare_models(model, model_new, self.assertNotEqual)
# Verify parameters are the same in the new model.
if state_dict_rank0_and_offload:
# Broadcast the state dict and move it back to GPU in
# preparation for loading.
if not isinstance(model, FSDP):
# Move everything to CPU to avoid running into
# https://github.com/pytorch/pytorch/issues/77113, some params
# will still be on GPU for non FSDP root modules.
for k in fsdp_state_dict.keys():
fsdp_state_dict[k] = fsdp_state_dict[k].cpu()
fsdp_state_dict = self._broadcast_state_dict(fsdp_state_dict)
for key in fsdp_state_dict.keys():
fsdp_state_dict[key] = fsdp_state_dict[key].cuda()
with FSDP.state_dict_type(model_new, STATE_DICT_MAPPING[state_dict_type]):
model_new.load_state_dict(fsdp_state_dict, strict=True)
self._compare_models(model, model_new, self.assertEqual, check_fp16=fp16)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
@parametrize("mixed_precision", [True, False])
@parametrize("state_dict_rank0_and_offload", [True, False])
def test_save_and_load_after_forward_state_dict(
self, state_dict_type, mixed_precision, state_dict_rank0_and_offload
):
"""
Test that saving after some training results in params being updated as
expected.
"""
if state_dict_rank0_and_offload and state_dict_type != "state_dict":
return
torch.cuda.set_device(self.rank)
mixed_precision = (
MixedPrecision(
param_dtype=torch.float16,
reduce_dtype=torch.float16,
buffer_dtype=torch.float16,
)
if mixed_precision
else None
)
model = self._get_simple_nested_model(mixed_precision=mixed_precision)
optim = torch.optim.SGD(model.parameters(), lr=0.1)
initial_params = get_full_params(model)
for _ in range(6):
inp = torch.randn(1, 10, device=torch.cuda.current_device())
output = model(*inp)
loss = output.sum()
expected_dtype = torch.float32 if mixed_precision is None else torch.float16
self.assertEqual(expected_dtype, loss.dtype)
loss.backward()
optim.step()
trained_params = get_full_params(model)
# Ensure some training occured
self.assertNotEqual(initial_params, trained_params)
# Save a copy of the state_dict
fsd_mgr = self._get_state_dict_mgr(
model, state_dict_type, state_dict_rank0_and_offload
)
with fsd_mgr:
state_dict = model.state_dict()
if state_dict_type == "state_dict":
state_dict = {k: v.clone() for k, v in state_dict.items()}
else:
for sharded_tensor in state_dict.values():
shard = sharded_tensor._local_shards[0]
shard.tensor = shard.tensor.clone().detach_()
self._validate_state_dict_contents(model, state_dict, state_dict_rank0_and_offload)
_zero_model(model)
# Ensure checkpointed params have the full param dtype
for tensor in state_dict.values():
self.assertEqual(tensor.dtype, torch.float32)
# Load state_dict into zeroed model
if state_dict_rank0_and_offload:
# Broadcast the state dict and move it back to GPU in
# preparation for loading.
state_dict = self._broadcast_state_dict(state_dict)
for key in state_dict.keys():
state_dict[key] = state_dict[key].cuda()
with FSDP.state_dict_type(model, STATE_DICT_MAPPING[state_dict_type]):
model.load_state_dict(state_dict, strict=True)
loaded_params = get_full_params(model)
self.assertEqual(loaded_params, trained_params)
def _initialize_model(
self,
wrap_fsdp: bool,
wrap_ddp: bool = True,
register_buffers: bool = False,
):
# keep everything deterministic for input data
torch.manual_seed(0)
model = Model(wrap_fsdp, register_buffers=register_buffers).cuda()
if wrap_fsdp:
model = FSDP(model)
elif wrap_ddp:
model = DistributedDataParallel(model, device_ids=[self.rank])
return model
@staticmethod
def _state_dict(model: Module, state_dict_type: str):
try:
enum_val = STATE_DICT_MAPPING[state_dict_type]
except KeyError:
raise ValueError(f"No state_dict type for {state_dict_type}")
with FSDP.state_dict_type(model, enum_val):
return model.state_dict()
@staticmethod
def _load_state_dict(
model: Module, state_dict_type: str, state_dict: Dict[str, Any]
):
try:
enum_val = STATE_DICT_MAPPING[state_dict_type]
except KeyError:
raise ValueError(f"No state_dict for {state_dict_type}")
with FSDP.state_dict_type(model, enum_val):
return model.load_state_dict(state_dict, strict=True)
def _dist_train(
self, wrap_fsdp: bool, state_dict_type: str = "", move_to_cpu: bool = False
):
# TODO: Move this test to common_fsdp.
model = self._initialize_model(wrap_fsdp)
optim = SGD(model.parameters(), lr=0.1)
in_data = torch.rand(64, 4, requires_grad=True, device=torch.device("cuda"))
for _ in range(3):
out = model(in_data)
out.sum().backward()
optim.step()
optim.zero_grad()
if wrap_fsdp:
blank_model = FSDP(Model(True).cuda())
_zero_model(blank_model)
state_dict = self._state_dict(model, state_dict_type)
if move_to_cpu:
for key in list(state_dict.keys()):
tensor = state_dict[key]
if isinstance(tensor, torch.Tensor):
state_dict[key] = tensor.cpu()
else:
shards = tensor.local_shards()
if shards:
shards[0].tensor = shards[0].tensor.cpu()
self._load_state_dict(blank_model, state_dict_type, state_dict)
return get_full_params(blank_model)
else:
return list(model.parameters())
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
def test_state_dict_save_load_flow(self, state_dict_type):
for move_to_cpu in [True, False]:
with self.subTest(move_to_cpu=move_to_cpu):
fsdp_params = self._dist_train(
wrap_fsdp=True, state_dict_type=state_dict_type, move_to_cpu=move_to_cpu,
)
ddp_params = self._dist_train(wrap_fsdp=False)
self.assertEqual(ddp_params, fsdp_params)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
def test_fsdp_state_dict_keys(self, state_dict_type):
state_dict = self._state_dict(self._initialize_model(True), state_dict_type)
if state_dict_type == "local_state_dict":
self.assertEqual(set(["flat_param", "inner.flat_param"]), state_dict.keys())
elif state_dict_type in ("state_dict", "sharded_state_dict"):
# Keys should match local model.
local_model = self._initialize_model(wrap_fsdp=False, wrap_ddp=False)
local_keys = local_model.state_dict().keys()
self.assertEqual(state_dict.keys(), local_keys)
else:
raise NotImplementedError(f"No test for {state_dict_type}!")
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", _UNFLATTENED_STATE_DICT_IMPLS)
@parametrize("state_dict_rank0_and_offload", [True, False])
@parametrize("fsdp_root", [True, False])
def test_state_dict_load_into_local_module(
self, state_dict_type, state_dict_rank0_and_offload, fsdp_root,
):
"""
Tests that FSDP's state_dict can be loaded into a local model.
"""
if state_dict_rank0_and_offload and state_dict_type != "state_dict":
return
if not fsdp_root:
model = self._get_non_fsdp_root_module()
else:
model = self._initialize_model(wrap_fsdp=True, register_buffers=True)
optim = SGD(model.parameters(), lr=0.1)
if not fsdp_root:
in_data = torch.randn(1, 10, requires_grad=True, device=torch.device("cuda"))
else:
in_data = torch.rand(64, 4, requires_grad=True, device=torch.device("cuda"))
for _ in range(3):
out = model(in_data)
out.sum().backward()
optim.step()
optim.zero_grad()
with FullyShardedDataParallel.summon_full_params(model):
fsdp_params = deepcopy(list(model.parameters()))
# get FSDP state_dict. Note that by default we return full_state_dict.
sd_mgr = self._get_state_dict_mgr(
model, state_dict_type, state_dict_rank0_and_offload
)
with sd_mgr:
fsdp_state_dict = model.state_dict()
ignore_keys = [k for k in fsdp_state_dict.keys() if NON_ROOT_FSDP_PREFIX in k]
self._validate_state_dict_contents(
model, fsdp_state_dict, state_dict_rank0_and_offload, ignore_keys=ignore_keys,
)
# Create zeroed local model
if not fsdp_root:
blank_local_model = self._get_non_fsdp_root_module(wrap=False)
else:
blank_local_model = self._initialize_model(
wrap_fsdp=False, wrap_ddp=False, register_buffers=True
)
# Nothing should be FSDP
for mod in blank_local_model.modules():
self.assertFalse(isinstance(mod, FSDP))
for param in blank_local_model.parameters():
with torch.no_grad():
param.zero_()
fsdp_state_dict = _gather_state_dict(fsdp_state_dict)
# Load fsdp's full state dict into the local and verify params are as
# expected.
if state_dict_rank0_and_offload:
# Broadcast + CUDA state_dict
if not isinstance(model, FSDP):
# Some portions of the model on rank 0 might not be on CPU,
# move everything to CPU to avoid running into
# https://github.com/pytorch/pytorch/issues/77113.
for k, t in fsdp_state_dict.items():
if t.device != torch.device("cpu"):
fsdp_state_dict[k] = t.cpu()
fsdp_state_dict = self._broadcast_state_dict(fsdp_state_dict)
for key in fsdp_state_dict.keys():
fsdp_state_dict[key] = fsdp_state_dict[key].cuda()
# if self.rank == 0:
blank_local_model.load_state_dict(fsdp_state_dict, strict=True)
local_params = list(blank_local_model.parameters())
for fsdp_param, local_param in zip(fsdp_params, local_params):
self.assertEqual(fsdp_param, local_param)
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", _SUPPORTED_STATE_DICT_IMPLS)
@parametrize("double_nest", [True])
def test_state_dict_skip_module(self, state_dict_type, double_nest):
torch.cuda.set_device(self.rank)
def _create_module(wrap_fsdp=True):
LINEAR_SKIP = "linear_skip"
ctx = enable_wrap(wrapper_cls=FSDP) if wrap_fsdp else suppress()
with ctx:
module = SkipModel(double_nest=double_nest)
# Full name of linear_skip param tensors in SkipModel, as would be
# stored in checkpoint.
linear_skip_tensor_names = [
k
for k in dict(module.named_parameters()).keys()
if LINEAR_SKIP in k
]
# skip SkipModule
linear_skip = getattr(module, LINEAR_SKIP)
delattr(module, LINEAR_SKIP)
# Wrap FSDP
fsdp = wrap(module)
# reattach
setattr(module, LINEAR_SKIP, linear_skip)
return fsdp, linear_skip_tensor_names
fsdp, linear_skip_tensor_names = _create_module()
# Run a forward pass
inp = torch.randn((1, 10), device=torch.cuda.current_device())
loss = fsdp(inp)
loss.sum().backward()
with FSDP.state_dict_type(fsdp, STATE_DICT_MAPPING[state_dict_type]):
state_dict = fsdp.state_dict()
if self.rank == 0 and state_dict_type != "local_state_dict":
sd_keys = list(state_dict.keys())
expected = list(SkipModel(double_nest=False).state_dict().keys())
self.assertEqual(sorted(sd_keys), sorted(expected))
# TODO: parameters in linear_skip_tensor_names should not be handled
# by FSDP.state_dict(). Have a check once this is implemented in
# FSDP.state_dict().
# Check that it can be loaded into FSDP.
new_fsdp, _ = _create_module()
_zero_model(new_fsdp)
for (p1, p2) in zip(fsdp.parameters(), new_fsdp.parameters()):
self.assertNotEqual(p1, p2)
with FSDP.state_dict_type(new_fsdp, STATE_DICT_MAPPING[state_dict_type]):
if state_dict_type != "local_state_dict":
# FlatParameter has not supported deepcopy yet.
state_dict = deepcopy(state_dict)
new_fsdp.load_state_dict(state_dict, strict=True)
for (p1, p2) in zip(fsdp.parameters(), new_fsdp.parameters()):
self.assertEqual(p1, p2)
# Test that the checkpoint can be loaded into a local model.
local, _ = _create_module(wrap_fsdp=False)
for param in local.parameters():
with torch.no_grad():
param.zero_()
with fsdp.summon_full_params(fsdp):
for (p1, p2) in zip(fsdp.parameters(), local.parameters()):
self.assertNotEqual(p1, p2)
if state_dict_type == "local_state_dict":
return
state_dict = _gather_state_dict(state_dict)
with fsdp.summon_full_params(fsdp):
if self.rank == 0:
local.load_state_dict(state_dict, strict=True)
for (p1, p2) in zip(fsdp.parameters(), local.parameters()):
self.assertEqual(p1, p2)
@skip_if_lt_x_gpu(2)
def test_wrong_state_dict_config(self):
model = FSDP(Model(wrap_fsdp=True).cuda())
with self.assertRaisesRegex(RuntimeError, "Expected state_dict_config of type"):
with model.state_dict_type(
model, StateDictType.FULL_STATE_DICT, LocalStateDictConfig()
):
pass
@skip_if_lt_x_gpu(2)
@parametrize("state_dict_type", _UNFLATTENED_STATE_DICT_IMPLS)
@parametrize("prefix", [True, False])
@parametrize("ignore_inner", [True, False])
def test_state_dict_with_ignored_modules(self, state_dict_type, prefix, ignore_inner):
# Initialize an FSDP-wrapped model with an ignored module that includes
# both parameters and a buffer
model = Model(wrap_fsdp=True, register_buffers=True, ignore_inner=ignore_inner).cuda()
ignored_modules = [model.outer]
ignored_tensor_to_tensor_name = {
model.outer.bias: "outer.bias",
model.outer.weight: "outer.weight",
}
if ignore_inner:
ignored_tensor_to_tensor_name = {
**ignored_tensor_to_tensor_name,
model.inner.bias: "inner.bias",
model.inner.weight: "inner.weight",
}
# Note that when model.inner is not ignored this test also ensures
# non-ignored buffers are not cloned.
buffer_to_buffer_name = {
model.inner.buffer: "inner.buffer", model.outer.buffer: "outer.buffer",
}
fsdp_model = FSDP(model, ignored_modules=ignored_modules)
prefix_str = "foo." if prefix else ""
with FSDP.state_dict_type(fsdp_model, STATE_DICT_MAPPING[state_dict_type]):
sd1 = _gather_state_dict(fsdp_model.state_dict(prefix=prefix_str))
with FSDP.summon_full_params(fsdp_model):
fsdp_params = deepcopy(list(fsdp_model.parameters()))
# Check that the ignored parameters and all buffers are not cloned
for tensor, tensor_name in {
**ignored_tensor_to_tensor_name,
**buffer_to_buffer_name,
}.items():
prefixed_tensor_name = f"{prefix_str}{tensor_name}"
self.assertTrue(prefixed_tensor_name in sd1)
self.assertEqual(tensor.data_ptr(), sd1[prefixed_tensor_name].data_ptr(), f"{prefixed_tensor_name}")
# Check that the state dict can be loaded into a non-wrapped version of
# the model
nonwrapped_model = Model(wrap_fsdp=False, register_buffers=True).cuda()
for param in nonwrapped_model.parameters():
with torch.no_grad():
param.zero_()
to_load = {k[len(prefix_str):] : v for k, v in sd1.items()}
nonwrapped_model.load_state_dict(to_load, strict=True)
local_params = list(nonwrapped_model.parameters())
for fsdp_param, local_param in zip(fsdp_params, local_params):
self.assertEqual(fsdp_param, local_param)
# Check that if we save a state dict again, the ignored parameters and
# buffer still have the same data pointer
with FSDP.state_dict_type(fsdp_model, STATE_DICT_MAPPING[state_dict_type]):
sd2 = fsdp_model.state_dict(prefix=prefix_str)
for tensor, tensor_name in {
**ignored_tensor_to_tensor_name,
**buffer_to_buffer_name,
}.items():
prefixed_tensor_name = f"{prefix_str}{tensor_name}"
self.assertTrue(prefixed_tensor_name in sd2)
self.assertEqual(tensor.data_ptr(), sd2[prefixed_tensor_name].data_ptr())
self.assertEqual(sd1[prefixed_tensor_name].data_ptr(), sd2[prefixed_tensor_name].data_ptr())
@skip_if_lt_x_gpu(2)
def test_state_dict_type(self):
module = SkipModel(double_nest=True)
with enable_wrap(wrapper_cls=FSDP):
fsdp = wrap(module)
with FSDP.state_dict_type(fsdp, StateDictType.LOCAL_STATE_DICT):
pass
for module in FSDP.fsdp_modules(fsdp):
self.assertEqual(module._state_dict_type, StateDictType.FULL_STATE_DICT)
instantiate_parametrized_tests(TestFSDPStateDict)
if __name__ == "__main__":
run_tests()
|